Skip to main content
Log in

Catalysis and inhibition of the combustion of ammonium perchlorate based solid propellants

  • Published:
Combustion, Explosion and Shock Waves Aims and scope

Abstract

Results of studies of the combustion of a composite solid propellant based on ammonium perchlorate are presented. The effect of additives of metal oxides is studied for the high and low-temperature decompositions, linear pyrolysis, and combustion of ammonium perchlorate, the decomposition of HClO4, isobutylene oxidation by oxygen and perchloric acid, and the combustion of propellants with various organic combustibles. It is shown that the efficiency of metal oxides in the reactions of oxidation of isobutylene and propellant combustion is related to the energy of the Me—O bond in the surface oxide layer or the enthalpy of formation of this bond. The extremal nature of the catalytic effect of metal oxides on the burning rate of the propellant is due to the small time of residence of the oxide particles in the zone of intense oxidation-reduction reactions. For this reason, the same additives of metal oxides has different effects on the combustion of the propellant with different organic, combustibles, and the most efficient catalyst can be chosen by a simplified algorithm. The potentials for affecting the composite solid propellant via gas-phase oxidation-reduction reactions is indicated by the effect of additives of organic sources of active species—amines and halides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. W. M. Jacobs and H. M. Whitehead, “Decomposition and combustion of ammonium perchlorate,”Chem. Rev.,69, No. 4, 551 (1969).

    Article  Google Scholar 

  2. S. S. Novikov, P. F. Pokhil, and Yu. S. Ryazantsev, “Modern concepts of the combustion mechanism of condensed systems,”Fiz. Goreniya Vzryva,4, No. 4, 469–481 (1968).

    Google Scholar 

  3. K. Kishore and M. R. Sunitha, “Effect of transition metal oxides on decomposition and deflagration of composite solid propellant systems: A survey,”AIAA J.,17, No. 10, 1118–1129 (1979).

    Article  ADS  Google Scholar 

  4. N. N. Bakhman and A. F. Belyaev,Combustion of Heterogeneous Condensed Systems [in Russian], Nauka, Moscow (1967).

    Google Scholar 

  5. A. P. Glazkova,Catalysis of the Combustion of Explosives [in Russian], Nauka, Moscow (1976).

    Google Scholar 

  6. Ya. B. Zel'dovich, “On the theory of the combustion of powders and explosives,”Zh. Éksp. Teor. Fiz.,12, Nos 11/12, 498–524 (1942).

    Google Scholar 

  7. L. K. Gusachenko, V. E. Zarkov, V. Ya. Zuryanov, and V. P. Bobryshev,Simulation of the Combustion Processes of Solid Propellants [in Russian], Nauka, Novosibirsk (1985).

    Google Scholar 

  8. G. I. Ksandopulo,Flame Chemistry [in Russian], Khimiya, Moscow (1980).

    Google Scholar 

  9. A. V. Boldyreva, B. N. Bezrukov, and V. V. Boldyrev, “On the mechanism of action of additives on the thermal decomposition of ammonium perchlorate,”Kinet. Kat., 8, No. 2, 299–303 (1967).

    Google Scholar 

  10. A. A. Shidlovskii, L. F. Shmagin, and V. V. Bulanova, “Effect of some additives on the thermal decomposition of ammonium perchlorate,”Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol.,8, No. 4, 533–538 (1965).

    Google Scholar 

  11. F. Solymosi and L. Révész, “Thermal decomposition of ammonium perchlorate in the presence of ferric oxide,”Kinet Katal.,4, No. 1, 88–96 (1963).

    Google Scholar 

  12. K. Kuratani, “Some studies on solid propellants,” in:Kinetics of Thermal Decomposition of Ammonium Perchlorate, Part I, Report Aeronaut. Res. Inst. Univ., Tokyo, Vol. 28, No. 4 (1962), 79–101.

  13. E. Santacesaria and S. Carra, “Kinetics of ammonium perchlorate decomposition,”React. Kinet. Catal. Lett.,5, No. 3, 317–324 (1976).

    Article  Google Scholar 

  14. O. P. Korobeinichev, “Kinetics of the catalytic reactions of thermal decomposition of perchloric acid and ammonium perchlorate,”Fiz. Goreniya Vzryva,9, No. 2, 199–204 (1973).

    Google Scholar 

  15. F. Solymosi, L. B. Gera, and S. Börcsök, “Catalytic pyrolysis of HClO4 and its relation to the decomposition and combustion of NH4ClO4,” in:13th Symp. (Int.). Combust., Salt Lake City, Utah (1970). [Abstr. Pap. Pittsburgh (1970), pp. 154–156.]

  16. A. Hermoni (Makovky) and A. Salmon, “The thermal explosion of ammonium perchlorate,”Bull. Res. Council Israel., AII, No. 3, 198–199 (1962).

    Google Scholar 

  17. V. H. Anderson, “Comments on ‘Gas-Film Effect in the Linear Pyrolysis of Solids',”Raket. Tekhn. Kosm., Vol. 2, No. 2, p. 227 (1964).

    Google Scholar 

  18. M. Guinet, “Vitesse lineaire de pyrolyse du perchlorate d'ammonium en ecoulement unidimesionnel,”Rech. Aerospat., No. 109, 41–49 (1965).

    Google Scholar 

  19. R. F. Mc Alevy and R. B. Cole, “Ammonium perchlorate linear pyrolysis by convective surface heating,” AIAA Paper, No. 501 (1969).

  20. R. L. Coats, “Changing the rate of linear pyrolysis of solid rocket propellant components,”Raket. Tekhn. Kosm.,3, No. 7, 55 (1965).

    Google Scholar 

  21. A. F. Belyaev and G. V. Lukashenya, “On the effective combustion temperature of some explosives,”Prikl. Mekh. Tekh. Fiz., No. 6, 114 (1963).

    Google Scholar 

  22. J. B. Levy and R. Friedman, “Further studies on pure ammonium perchlorate deflagration,” in:8th Symp. (Int.) on Combustion (Pasadena, CA, 1960), Baltimore (1962), pp. 663–671.

  23. A. A. Shidlovskii, L. F. Shmagin, and V. V. Bulanova, “Combustion of ammonium perchlorate at atmospheric pressure,”Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., No. 5, 863–864 (1964).

    Google Scholar 

  24. L. De Luca, C. Casic, and V. Boldrini, “Effect of additives on the burning rate of ammonium perchlorate,”Vopr. Raket. Tekh., No. 11 (203), 56–62 (1971).

    Google Scholar 

  25. S. H. Inami, Y. Rajapakse, R. Shaw, and H. Wise, “Solid propellant kinetics. I. The ammonium perchlorate-copper chromite-fuel system,”Combust. Flame,17, No. 2, 189–196 (1971).

    Article  Google Scholar 

  26. G. V. Ivanov, G. I. Shibaev, V. F. Komarov, and V. V. Boldyrev, “Combustion of ammonium perchlorate mixed with various organic substances,”Fiz. Goreniya Vzryva,3, No. 2, 315–317 (1967).

    Google Scholar 

  27. V. I. Braginskii and N. N. Bakhman, “On the relation between the heat of gasification of fuels and the burning rate of condensed systems,”Fiz. Goreniya Vzryva,7, No. 3, 376–379 (1972).

    Google Scholar 

  28. V. I. Braginskii, “Effect of some functional groups in a fuel molecule on the burning rate of condensed systems,”Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol.,15, No. 12, 1828–1830 (1972).

    Google Scholar 

  29. Osada Hidze and Kakinouti Seiko, “Investigation of the initial phase of combustion of composite solid rocket propellants,”J. Indust. Explos. Soc. Jpn.,26, No. 4, 200–211 (1965).

    Google Scholar 

  30. H. L. Girdhar and A. J. Arora, “Combustion of phenol-formaldehyde composite propellants,”J. Spacecraft Rockets,13, No. 7, 443–445 (1976).

    Article  ADS  Google Scholar 

  31. S. A. Vorob'eva, A. I. Lesnikovich, G. B. Manelis, et al., Effect of the physical state of the activators on the combustion of composite rocket propellants. The applied catalysts,”Fiz. Goreniya Vzryva,31, No. 6, 82–88 (1995).

    Google Scholar 

  32. G. S. Pearson, “The role of catalysis in the ignition and combustion of solid propellants,”Combust. Sci. Technol.,3, No. 4, 155–163 (1971).

    Article  MathSciNet  Google Scholar 

  33. R. V. Petrella and T. L. Spink, “Flash pyrolysis and kinetic spectroscopy of ammonium perchlorate,”J. Chem. Phys.,47, No. 4, 1488–1490 (1967).

    Article  ADS  Google Scholar 

  34. V. M. Mal'tsev, M. I. Mal'tseva, and L. Ya. Kashporov,Basic Characteristics of Combustion [in Russian], Chapter V, Khimiya, Moscow (1977).

    Google Scholar 

  35. H. Selzer, “Über den Verbrennungs mechanismus von compositz—Treibstoffen,”Raketentehn. Raumfahrtforch,7, No. 2, 41–46 (1963).

    Google Scholar 

  36. N. E. Ermolin, O. P. Korobeinichev, A. G. Tereshchenko, and V. M. Fomin, “Mea suring the profiles of reactant concentrations and temperature in ammonium perchlorate flames,”Fiz. Goreniya Vzryva,18, No. 1, 46–49 (1982).

    Google Scholar 

  37. O. P. Korobeinichev, “Dynamic flame probe mass spectrometry and condensed-system decomposition,”Fiz. Goreniya Vzryva,23, No. 5, 64–76 (1987).

    Google Scholar 

  38. O. P. Korobeinichev, A. G. Tereshchenko, V. M. Schvartsberg, et al., “Flame structure of ammonium perchlorate based layered systems,”Fiz. Goreniya Vzryva,26, No. 2, 53–58 (1990).

    Google Scholar 

  39. A. R. Hall and G. S. Pearson, “The mechanism of the catalysis of ammonium perchlorate combustion: Effect of preflame heat release on burning rate of the phase flame,”Combust. Flame,13, No. 6, 666–668 (1969).

    Article  Google Scholar 

  40. G. S. Pearson and D. Sutton, “Ignition of composite rocket propellants: ignition of ammonia by vapors of perchloric acid,”Raket. Tekhn. Kosm.,5, No. 2, 205 (1967).

    Google Scholar 

  41. O. P. Korobeinichev, V. N. Orlov, and N. Ya. Shifon, “Mass-spectrometric investigation of the chemical structure of the flames of perchloric acid in a stoichiometric mixture with methane,”Fiz. Goreniya Vzryva,17, No. 6, 55–62 (1981).

    Google Scholar 

  42. O. P. Korobeinichev, V. N. Orlov, and N. Ya. Shifon, “Mass-spectrometric investigation of the chemical structure of the flames of perchloric acid in lean and rich mixtures with methane,”Fiz. Goreniya Vzryva,18, No. 5, 77–83 (1982).

    Google Scholar 

  43. V. V. Bogdanova, V. F. Komarov, A. I. Lesnikovich, and V. V. Sviridov, “Effect of structural features of individual and mixed oxides of copper and iron on their activity in the ignition of a mixture of isobutylene and perchloric acid,”Fiz. Goreniya Vzryva,10, No. 1, 99–101 (1974).

    Google Scholar 

  44. A. I. Lesnikovich, V. V. Sviridov, V. F. Komarov, et al. “Effect of the oxides of some metals on the spontaneous combustion of a mixture of isobutylene and perchloric acid,”Izv Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol.,18, No. 6, 880–883 (1975).

    Google Scholar 

  45. N. V. Lavrov and A. P. Shurygin,Introduction to the Theory of Combustion and Gasification of Propellants [in Russian], Izd. Akad. Nauk SSSR, Moscow (1962).

    Google Scholar 

  46. G. J. Gibbs and H. F. Calcote, “Effect of molecular structure on burning velocity,”J. Chem. Eng. Data,4, No. 3, 226–237 (1959).

    Article  Google Scholar 

  47. V. Ya. Basevich and S. M. Kogarko, “On the combustion mechanism of ethane,”Izv. Akad. Nauk SSSR, Ser. Khim., No. 8, 1728–734 (1977).

    Google Scholar 

  48. N. V. Lavrov,Physicochemical Fundamentals of Propellant Combustion [in Russian], Nauka, Moscow (1971).

    Google Scholar 

  49. A. A. Paletskii, L. V. Kuibida, T. A. Bol'shova, et al., “Investigation of the structure of a H2−O2−Ar flame by probe mass spectrometry,”Fiz. Goreniya Vzryva,32, No 3, 3–10 (1997).

    Google Scholar 

  50. G. K. Boreskov, V. A. Sazonov, and V. V. Popovskii, “Catalytic properties of IV period metal oxides and the bond energy of oxygen in a surface layer,”Dokl. Akad. Nauk SSSR,176, No. 6, 1331–1334 (1967).

    Google Scholar 

  51. G. I. Golodets, “Selection of catalysts for some processes of incomplete oxidation of organic substances by molecular oxygen,”Dokl. Akad. Nauk SSSR,184, No. 6, 1334 (1968).

    Google Scholar 

  52. K. G. Boreskov, “Some possibilities of predicting the catalytic activity of solid catalysts in oxidation-reduction reactions,”Kinet. Katal.,8, No. 5, 1020 (1967).

    Google Scholar 

  53. V. A. Sazonov, V. V. Popovskii, and G. K. Boreskov, “Catalytic activity of metal oxides and the oxygen bond energy,”Kinet. Katal.,9, No. 2, 312 (1968).

    Google Scholar 

  54. V. V. Popovskii, G. K. Boreskov, V. S. Muzykantov, et al., “Oxygen bond energy and catalytic activity of some oxides,”Kinet. Katal.,10, No. 4, 786 (1969).

    Google Scholar 

  55. G. K. Boreskov, V. V. Popovskii, and V. A. Sazonov, “Dependence of the activity of oxidation catalysts on the oxygen bond energy,” in:Fundamentals of the Prediction of Catalytic Action: Proc. IVth Int. Congress on Catalysis [in Russian], Vol. 1, Nauka, Moscow (1970), pp. 343–354.

    Google Scholar 

  56. K. G. Boreskov, “Interaction of gases with the surface of solid catalysts,”Methods of Investigating Catalysts and Catalytic Reactions [in Russian], Vol. 4, Nauka, Novosibirsk (1971), pp. 3–23.

    Google Scholar 

  57. M. Ya. Rubanik, K. M. Kholyavenko, A. V. Gershingorina, and V. I. Lazukina, “Catalytic activity of metal oxides in the oxidation of propylene,”Kinet. Katal.,5, No. 4, 666–673 (1971).

    Google Scholar 

  58. L. Ya. Margolis and A. V. Krylov, “On intermediate forms in the catalytic oxidation of hydrocarbons”, in:Problems of Kinetics and Catalysis [in Russian], Vol. 13, Nauka, Moscow (1968), pp. 200–216.

    Google Scholar 

  59. V. M. Belousov and A. V. Gershingorina, “Problems of selecting oxidizing catalysts and the unsteady state of their surface, in:Fundamentals of the Prediction of Catalytic Action: Proc. IVth Int. Congress on Catalysis [in Russian], Vol. 1, Nauka, Moscow (1970), pp. 260–265.

    Google Scholar 

  60. Yu. Kubokava, T. Adachi, T. Tomino, and T. Odzava, “Nature of activity in the chemosorption of propylene and isomerization of cis-butane-2 on metal oxides,”ibid., pp. 403–409.

    Google Scholar 

  61. V. Pechanec, “Verbrennungs katalysatoren in organischen elementaranalyse. I. Katalytischet verbren-nungsaktivität von metallen und metalloxiden,”Collect. Czech. Chem. Communs,38, No. 10, 2917–2925 (1973).

    Google Scholar 

  62. G. G. Alkhazov and L. Ya. Margolis,Deep Catalytic Oxidation of Organic Substances [in Russian], Chapters 2 and 3, Khimiya, Moscow (1985).

    Google Scholar 

  63. A. I. Gel'bshtein, S. S. Stroeva, Yu. M. Bakshi, and Yu. A. Mishchenko, “Factors determining the activity and selectivity of oxides and their mixed systems in the oxidation reactions of olefins”, in:Fundamentals of the Prediction of Catalytic Action: Proc. IV Int. Congress on Catalysis [in Russian], Vol. 1, Nauka, Moscow (1970), pp. 251–259.

    Google Scholar 

  64. D. G. Klissuroki, “Regularities of the selection of oxide catalysts for reactions such as the oxidation of methanol in formaldehyde”,ibid., pp. 374–379.

    Google Scholar 

  65. D. V. Sokol'skii, G. K. Alekseeva, V. A. Druz', and G. N. Kotova, “Potentials and kinetic activity of metal oxides and oxide catalysts in a gas phase”,Dokl. Akad. Nauk SSSR,203 No. 2, 398–401 (1972).

    Google Scholar 

  66. Yoshiko Moro-oka, Yutaka Morikawa, and Atsumi Ozaki, “Regularities of the catalytic properties of metal oxides in the oxidation reactions of hydrocarbons”,Kinet. Katal.,7, No. 3, 717 (1967).

    Google Scholar 

  67. V. A. Roiter, G. I. Golodets, and Yu. I. Pyatniskii, “Use of thermodynamics for predicting catalytic activity”, in:Fundamentals of the Prediction of Catalytic Action: Proc. IV Int. Congress on Catalysis [in Russain], Vol. 1, Nauka, Moscow (1970), pp. 365–374.

    Google Scholar 

  68. N. I. Il'chenko and G. I. Golodets, “Catalytic oxidation of ammonia. I. Reaction kinetics and mechanism”,J. Catal.,39, No. 1, 57–72 (1975).

    Article  Google Scholar 

  69. N. I. Il'chenko and G. I. Golodets, “Catalytic oxidation of ammonia. II. Relationship between catalytic properties of substances and surface oxygen bond energy. General regularities in catalytic oxidation of ammonia and organic substances”,J. Catal.,39, No. 1, 73–86 (1975).

    Article  Google Scholar 

  70. N. I. Il'chenko, V. M. Vorotyntsev, and I. M. Avilova, “Oxidation of ammonia on metal oxides”,Kinet. Katal.,17, No. 2, 378–385 (1976).

    Google Scholar 

  71. N. M. Morozov, L. I. Luk'yanova, and M. I. Temkin, “Oxidation of ammonia on metal oxides”,Kinet. Katal.,7, No. 1, 172 (1966).

    Google Scholar 

  72. A. I. Efimov, L. P. Belorukova, I. V. Vasil'eva, and V. P. Chechev,Property of Inorganic Compounds: Handbook [in Russian], Khimiya, Moscow (1983).

    Google Scholar 

  73. N. Pernikone, J. Liberty, and L. Ersini, “Catalytic activity of pure MoO3 and mixtures of MoO3 with molybdates of trivalent metals in the oxidation of CH3OH to CH2O”, in:Fundamentals of the Prediction of Catalytic Action: Proc. IV Int. Congress on Catalysis [in Russian], Vol. 1, Nauka, Moscow (1970), pp. 244–251.

    Google Scholar 

  74. G. K. Boreskov,Catalysis. Problems of Theory and Practice [in Russian], Chapter IV, Nauka, Novosibirsk (1987).

    Google Scholar 

  75. A. Gaidon,Flame Spectroscopy [Russian translation], Chapter XII, Izd. Inostr. Lit, Moscow (1959).

    Google Scholar 

  76. U. Zietz and G. Baumgärtel., “The laminar flame speeds of propane-ammonia-air mixtures”,Combust. Flame,13, No. 13, 329–330 (1969).

    Article  Google Scholar 

  77. J. Combonrieu, R. Moreau, and G., Morean, “Flamens ammoniac-bioxyde de chlore et ammoniac-bioxyde de chlore-methane: Stabilisation sur bruleur ef vitesses de deflagration”C.R. Acad. Sci. 269, No. 17, 948–950 (1969).

    Google Scholar 

  78. N. N. Semenov and V. V. Voevodskii,Heterogeneous Catalysis in the Chemical Industry [in Russian], Goskhimizdat, Moscow (1955), p. 233

    Google Scholar 

  79. N. M. Émanuel, “Heterogeneous catalysis in the liquid-phase oxidation of hydrocarbon”, in:Modern Problems of the Science of Catalysis: Siberian Lectures on Catalysis [in Russian], Novosibirsk (1978), pp. 26–52.

  80. O. V. Krylov, “Free-radical processes in heterogeneous oxidizing catalysis”, in:Problems of Modern Catalysis [in Russian], Vol. 2, Novosibirsk (1988), pp. 331–341.

  81. A. N. Baratov, “Chemical inhibition of flames”,Zh. Khim. Obshch. Mendeleeva,12, No. 3, 276 (1967).

    Google Scholar 

  82. G. I. Ksandopulo, Flame Chemistry [in Russian], Chapter IV, Khimiya, Moscow (1980).

    Google Scholar 

  83. V. I. Kodolov,Retardants of the Combustion of Polymers [in Russian], Chapter II, Khimiya, Moscow (1980).

    Google Scholar 

  84. E. V. Vasil'ev and G. F. Bebikh, “On the role of hydrogen atoms of amine groups in the mechanism of the inhibiting action of amines”,Vestn. Mosk. Univ., Ser. Khim., No. 6, 50–53 (1966).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated fromFizika Goreniya i Vzryva, Vol. 35, No. 6, pp. 76–90, November–December 1999.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Komarov, V.F. Catalysis and inhibition of the combustion of ammonium perchlorate based solid propellants. Combust Explos Shock Waves 35, 670–683 (1999). https://doi.org/10.1007/BF02674542

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02674542

Keywords

Navigation