Skip to main content
Log in

An experimental and numerical study of cyclic deformation in metal-matrix composites

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

The cyclic stress-strain characteristics of discontinuously reinforced metal-matrix composites are studied both experimentally and numerically. The model systems used for investigation are aluminum alloys reinforced with SiC particulates and whiskers. Finite element analyses of the fatigue deformation of the composite are performed within the context of axisymmetric unit cell formulations. Two constitutive relations are used to characterize the matrix of the composite: the fully dense Mises model of an isotropically hardening elastic-viscoplastic solid and the Gurson model of a progressively cavitating elastic-viscoplastic solid (to simulate ductile matrix failure by the nucleation and growth of voids). The brittle reinforcement phase is modeled as elastic, and the interface between the ductile matrix and the reinforcement is taken to be perfectly bonded. The analyses provide insights into the effects of reinforcement shape and concentration on (1) constrained matrix deformation under cyclic loading conditions, (2) cyclic hardening and saturation, (3) the onset and progression of plastic flow and cavitation within the matrix, and (4) cyclic ductility. The numerical predictions of flow strength, strain hardening, evolution of matrix field quantities, and ductility under cyclic loading conditions are compared with those predicted for monotonic tensile deformation and with experimental observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Suresh:Fatigue of Materials, Cambridge University Press, Cambridge, United Kingdom, 1991.

    Google Scholar 

  2. J.M. Finney and C. Laird:Phil. Mag. A, 1975, vol. 31, pp. 339–66.

    Article  CAS  Google Scholar 

  3. P. Neumann: inPhysical Metallurgy, R.W. Cahn and P. Haasen, eds., Elsevier Science, Amsterdam, 1983, pp. 1554–93.

    Google Scholar 

  4. H. Mughrabi: inThe Strength of Metals and Alloys, P. Haasen, V. Gerold, and G. Kostorz, eds., Pergamon Press, Oxford, United Kingdom, 1980, vol. 3, pp. 1615–39.

    Google Scholar 

  5. T. Christman and S. Suresh:Acta Metall., 1988, vol. 36, pp. 1691–1704.

    Article  CAS  Google Scholar 

  6. M. Vogelsang, R.J. Arsenault, and R.M. Fisher:Metall. Trans. A, 1986, vol. 17A, pp. 379–89.

    CAS  Google Scholar 

  7. F.J. Humphreys: inMechanical and Physical Behavior of Metallic and Ceramic Composites, S.I. Anderson, eds., RISO National Laboratory, Roskilde, Denmark, 1989, pp. 51–78.

    Google Scholar 

  8. J.M. Papazian:Metall. Trans. A, 1988, vol. 19A, pp. 2945–53.

    CAS  Google Scholar 

  9. T. Christman, A. Needleman, S. Nutt, and S. Suresh:Mater. Sci. Eng., 1989, vol. 107A, pp. 49–61.

    Google Scholar 

  10. S. Nutt and A. Needleman:Scripta Metall., 1987, vol. 21, pp. 705–10.

    Article  CAS  Google Scholar 

  11. L.M. Brown and W.M. Stobbs:Phil. Mag., 1971, vol. 23, pp. 1185–99.

    Article  CAS  Google Scholar 

  12. J.D. Atkinson, L.M. Brown, and W.M. Stobbs:Phil. Mag. A, 1974, vol. 30, pp. 1247–80.

    Article  CAS  Google Scholar 

  13. D. Gould, P.B. Hirsch, and F.J. Humphreys:Phil. Mag. A, 1974, vol. 30, pp. 1353–77.

    Article  CAS  Google Scholar 

  14. J. Lorca, A. Needleman, and S. Suresh:Scripta Metall. Mater., 1990, vol. 24, pp. 1203–08.

    Article  Google Scholar 

  15. T. Christman, A. Needleman, and S. Suresh:Acta Metall., 1989, vol. 37, pp. 3029–50.

    Article  CAS  Google Scholar 

  16. V. Tvergaard:Acta Metall. Mater., 1990, vol. 38, pp. 185–94.

    Article  CAS  Google Scholar 

  17. T. Christman, J. Lorca, S. Suresh, and A. Needleman: inInelastic Deformation of Composite Materials, Springer-Verlag, New York, NY, 1991, pp. 309–23.

    Google Scholar 

  18. J.M. Papazian and P.N. Adler:Metall. Trans. A, 1990, vol. 21A, pp. 401–10; A. Levy and J.M. Papazian:Metall. Trans. A, 1990, vol. 21A, pp. 411–20.

    CAS  Google Scholar 

  19. J. Lorca, A. Needleman, and S. Suresh:Acta Metall. Mater., 1991, vol. 39, pp. 2317–35.

    Article  Google Scholar 

  20. A. Needleman and S.R. Nutt: inProc. 7th Int. Conf. Fract., K. Salama, K. Ravichandar, and D.M.R. Taplin, eds., Pergamon Press, Oxford, United Kingdom, 1989, pp. 2211–18.

    Google Scholar 

  21. G. Bao, R.M. McMeeking, and J.W. Hutchinson:Acta Metall. Mater., 1991, vol. 39, pp. 1871–82.

    Article  Google Scholar 

  22. S.V. Kamat, A.D. Rollet, and J.P. Hirth:Scripta Metall. Mater., 1991, vol. 25, pp. 27–32.

    Article  CAS  Google Scholar 

  23. W.H. Hunt, J.R. Brockenbrough, and P.E. Magnusen:Scripta Metall. Mater., 1991, vol. 25, pp. 15–20.

    Article  CAS  Google Scholar 

  24. S. Suresh, T. Christman, and Y. Sugimura:Scripta Metall., 1989, vol. 23, pp. 1599–1602.

    Article  CAS  Google Scholar 

  25. V. Tvergaard:Int. J. Fract., 1982, vol. 18, pp. 237–52.

    Google Scholar 

  26. A.L. Gurson: Ph.D. Thesis, Brown University, Providence, RI, 1975.

  27. J. Pan, M. Saje, and A. Needleman:Int. J. Fract., 1983, vol. 21, pp. 261–78.

    Article  Google Scholar 

  28. V. Tvergaard:Int. J. Fract., 1981, vol. 17, pp. 389–407.

    Article  Google Scholar 

  29. V. Tvergaard and A. Needleman:Acta Metall., 1984, vol. 32, pp. 157–69.

    Article  Google Scholar 

  30. J. Koplik and A. Needleman:Int. J. Solids Struct., 1988, vol. 24, pp. 835–53.

    Article  Google Scholar 

  31. V. Tvergaard:Adv. Appl. Mech., 1990, vol. 27, pp. 83–151.

    Article  Google Scholar 

  32. C.C. Chu and A. Needleman:J. Eng. Mater. Technol., 1980, vol. 102, pp. 249–56.

    Article  Google Scholar 

  33. D. Peirce, C.F. Shih, and A. Needleman:Compos. Struct., 1984, vol. 18, pp. 875–87.

    Article  Google Scholar 

  34. V. Tvergaard:J. Mech. Phys. Solids, 1976, vol. 24, pp. 291–304.

    Article  Google Scholar 

  35. R.W. Landgraf: inFatigue and Microstructure, M. Meshii, ed., ASM, Metals Park, OH, 1978, pp. 439–66.

    Google Scholar 

  36. C.H. Anderson and R. Warren:J. Compos., 1984, vol. 15, pp. 15–21.

    Google Scholar 

  37. J. Bonnen, J. Allison, and J.W. Jones:Metall. Trans. A, 1991, vol. 22A, pp. 1007–19.

    CAS  Google Scholar 

  38. T. Christman and S. Suresh:Mater. Sci. Eng., 1988, vol. A102, pp. 211–16.

    Google Scholar 

  39. C.P. You, A.W. Thompson, and I.M. Bernstein:Scripta Metall., 1987, vol. 21, pp. 181–86.

    Article  CAS  Google Scholar 

  40. S.V. Kamat, J.P. Hirth, and R. Mehrabian:Acta Metall., 1989, vol. 37, pp. 2395–2402.

    Article  CAS  Google Scholar 

  41. J.P. Tanaka, C.A. Pampillo, and J.R. Low: inReview of Developments in Plane Strain Fracture Testing, ASTM STP 463, ASTM, Philadelphia, PA, 1970, pp. 191–214.

    Google Scholar 

  42. R.H. Van Stone, R.H. Merchant, and J.R. Low: inFatigue and Fracture Toughness-Cryogenic Behavior, ASTM STP 556, ASTM, Philadelphia, PA, 1974, pp. 93–120.

    Google Scholar 

  43. G.L. Povirk, A. Needleman, and S.R. Nutt:Mater. Sci. Eng., 1991, vol. A132, pp. 31–38.

    CAS  Google Scholar 

  44. A. Needleman and V. Tvergaard:J. App. Mech., 1992, in press.

  45. P.E. McHugh, R.J. Asaro, and C.F. Shih:Computational Modeling of Metal Matrix Composite Materials, Proc. 1991 TMS Annual Meeting, 1991, in press.

Download references

Author information

Authors and Affiliations

Authors

Additional information

formerly Visiting Scientist, Division of Engineering, Brown University

Rights and permissions

Reprints and permissions

About this article

Cite this article

Llorca, J., Suresh, S. & Needleman, A. An experimental and numerical study of cyclic deformation in metal-matrix composites. Metall Trans A 23, 919–934 (1992). https://doi.org/10.1007/BF02675568

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02675568

Keywords

Navigation