Skip to main content
Log in

Mechanisms of fast fracture and arrest in steels

  • Published:
Metallurgical Transactions Aims and scope Submit manuscript

Abstract

Studies of the unstable propagation and arrest of brittle fractures were conducted on four steels: plain carbon steel, 3 pct Si steel, A-517, and 4340. Unstable fractures were initiated in double-cantilever-beam test specimens by forcing a wedge between the two beams under compression. These fractures propagate at essentially constant wedge opening displacement and can be made to arrest within the confines of the specimen. The strain energy stored in the specimen at the onset of propagation was varied systematically by changing the root radius of the starting slot. The experiments show that Ka, the stress intensity at arrest, is not a materials constant but depends on the strain energy stored in the specimen. Values of άrcR, the average energy dissipation rate during propagation, calculated for the four steels, are in the range2 3- GIc ≲ άcrR ≲ G{Ic}. Detailed metallographic examinations show that brittle fractures appear highly segmented on interior sections, but that the individual segments are interconnected. This morphology is attributed to isolated, difficult-to-cleave regions, comparable in size to the grains, which are bypassed and remain unbroken at relatively large distances behind the crack front. Etching studies conducted on a silicon steel reveal that the plastic deformation attending crack propagation is largely confined to the plastic stretching of the ligaments behind the crack front. Increases in the size, number, and toughness of the ligaments with temperature coincide with the brittle-to-ductile transition. An analytical model consisting of an elastic crack with a regular array of tractions representing the ligaments supports the view that the ligaments are the principal source of brittle crack propagation resistance in the steels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. S. Pellini and P. P. Puzak: NRL Report 5920, U. S. Naval Research Laboratory, March 15,1963.

  2. T. S. Robertson:J. Iron Steel lnst, 1953, vol. 175, p. 361.

    Google Scholar 

  3. Y. Akita and K. Ikeda: Transportation Tech. Research Inst., Report 56, Tokyo, December 1962.

  4. M. Yoshiki, T. Kanazawa, and S. Machida:Proc. Seventh Japanese Cong. Test. Mater., 1964, p. 71.

  5. A. A. Wells:Weld. Res., 1953, vol. 7, p. 34.

    Google Scholar 

  6. R. Weichen and K. Schonert:Int. J. of Frac. Mech., 1969, vol. 5, p. 353.

    Google Scholar 

  7. H. Itagaki, T. Kanazawa, and M. Yokhiki:Studies on the Brittle Fracture Problems in Japan, M. Yoshiki and T. Kanazawa, eds., Soc. of Naval Architects of Japan, 1967, vol. 13, p. 72.

  8. R. G. Hoagland:Trans ASME, 1967, vol. 89, Series D, p. 525.

    Article  Google Scholar 

  9. J. Eftis and J. M. Kraffit:Trans ASME, 1964, vol. 87, Series D, p. 257.

    Article  Google Scholar 

  10. F. P. Videon, F. W. Barton, and W. J. Hall:SSC Report 147,1963.

  11. K. B. Brobeig:Arkiv Fys., 1960, vol. 18, p. 159.

    Google Scholar 

  12. J. G. Williams, J. C. Radon, and C. E. Turner:Polymer Eng. Sci., 1968, vol. 5, p. 130.

    Article  Google Scholar 

  13. A. R. Rosenfield and P. N. Mincer: to be published in theProc. of the Battelle-Institute Seminar on Molecular Order held in Seattle, Wash., October, 1970.

  14. F. F. Videon, F. W. Barton, and W. J. Hall:Ship Structure Committee Report SSC-148,1963.

  15. J. M. Krafft and A. M. Sullivan:Trans ASM, 1963, vol. 56, p. 160.

    Google Scholar 

  16. J. Dvorak:Fracture 1969, P. L. Pratt,et ai, eds., Chapman and Hall, London, 1969, p. 338.

    Google Scholar 

  17. P. B. Crosley and E. J. Ripling:Trans ASME, 1969, vol. 91, Series D, p. 525.

    Article  Google Scholar 

  18. G. T. Hahn, W. S. Owen, B. L. Averbach, and M. Cohen:Weld. J., September, 1959, p. 367-S.

  19. G. T. Hahn, B. L. Averbach, W. S. Owen, and M. Cohen:Fracture, Proc. Swampscott Conf., p. 91, John Wiley, New York, 1959.

    Google Scholar 

  20. G. T. Hahn, P. N. Mincer, and A. R. Rosenfield:Exp. Mech., 1971, vol. 11, p. 248.

    Article  Google Scholar 

  21. J. J. Benbow and F. C. Roesler:Proc. Phys. Soc. (London), 1957, vol. B70, p. 201.

    Article  Google Scholar 

  22. W. F. Brown and J. E. Srawley:Plane Strain Crack Toughness Testing of High Strength Metallic Materials, Am. Soc. Test. Mater., Spec. Tech. Publ. 410, 1967.

  23. D. P. Clausing:Int. J. Fract. Mech., 1969, vol. 5, p. 211.

    Article  Google Scholar 

  24. T. R. Wilshaw, C. A. Rau, and A. S. Tetelman:Eng. Fract. Mech., 1968, vol. 1, p. 191.

    Article  Google Scholar 

  25. A. K. Shoemaker and S. T. Rolfe:Trans. ASME, 1969, vol. 91, Series D. p. 512.

    Article  Google Scholar 

  26. G. T. Hahn, M. Sarrate, and A. R. Rosenfleld:Plastic Zones in Fe-3 Si Steel Double-Cantilever-Beam Specimens, Int. J. Fract. Mech. (in press).

  27. C. Atkinson and J. D. Eshelby:Int. J. Fract. Mech., 1968, vol. 4, p. 3.

    Article  Google Scholar 

  28. J. I. Bluhm:Fracture, H. Liebowitz, ed., vol. 5, 1969, p. 1.

  29. J. M. Krafft:Appl. Mater. Res., vol. 3, 1964, p. 88.

    Google Scholar 

  30. H. C. van Elst:Trans. TMS-AIME, 1964, vol. 230, p. 460.

    Google Scholar 

  31. M. F. Kanninen:Int. J. of Fract. Mech., (in press).

  32. B. Gross and J. E. Srawley:NASA Tech. Note, TND-3295, February, 1966.

  33. J. D. Eshelby:Inelastic Behavior of Solids, Kanninen, Adler, Rosenfield, Jaffee, eds., p. 77, McGraw-Hill, New York, 1970.

    Google Scholar 

  34. J. P. Berry:J. Mech. Phys. Solids, 1960, vol. 8, p. 194.

    Article  Google Scholar 

  35. N. I. Muskhelishvili:Some Basic Problems of the Mathematical Theory of Elasticity, Noordhoff, Holland, 1953.

    Google Scholar 

  36. D. S. Dugdale:J. Mech. Phys. Solids, 1960, vol. 8, p. 100.

    Article  Google Scholar 

  37. P. C. Paris and G. C. Sih:Am. Soc. Test. Mater., Spec. Tech. Publ. 381, 1965, p. 30.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoagland, R.G., Rosenfield, A.R. & Hahn, G.T. Mechanisms of fast fracture and arrest in steels. Metall Trans 3, 123–136 (1972). https://doi.org/10.1007/BF02680591

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02680591

Keywords

Navigation