Skip to main content
Log in

On Gabay’s algorithms for mixed variational inequalities

  • Published:
Applied Mathematics and Optimization Submit manuscript

Abstract

Iterative numerical algorithms for variational inequalities are systematically constructed from fixed-point problem characterizations in terms of resolvent operators. The applied method is the one introduced by Gabay in [Ga], used here in the context of discrete variational inequalities, and with the emphasis on mixed finite element models. The algorithms apply to nonnecessarily potential problems, generalizing primal and mixed Uzawa and augmented Lagrangian-type algorithms. They are also identified with Euler and operator splitting methods for the time discretization of evolution first-order problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alduncin G (1987) Duality and variational principles of potential boundary value problems. Comput Methods Appl Mech Engrg 64: 469–485

    Article  MATH  Google Scholar 

  2. Alduncin G (1989) Subdifferential and variational formulations of boundary value problems. Comput Methods Appl Mech Engrg 72: 173–186

    Article  MATH  Google Scholar 

  3. Alduncin G (1992) Augmented Lagrangian methods for the quasistatic viscoelastic two-body contact problem with friction. In: Contact Mechanics (Curnier A, ed). Presses Polytechniques et Universitaires Romandes, Lausanne, pp 337–360

    Google Scholar 

  4. Alduncin G (1993) Primal and mixed upwind finite element approximations of control advection-diffusion problems. Comput Mech 11: 93–106

    Google Scholar 

  5. Brezis H (1973) Opérateurs Maximaux Monotones. North-Holland, Amsterdam

    MATH  Google Scholar 

  6. Blanchard D, Le Tallec P (1986) Numerical analysis of the equations of small strains quasistatic elastoviscoplasticity. Numer Math 50: 147–169

    Article  MATH  Google Scholar 

  7. Bermúdez A, Moreno C (1981) Duality methods for solving variational inequalities. Comput Math Appl 7: 43–58

    Article  MATH  Google Scholar 

  8. Bertsekas D P, Tsitsiklis J N (1989) Parallel and Distributed Computation, Numerical Methods. Prentice-Hall, Englewood Cliffs, NJ

    MATH  Google Scholar 

  9. Eckstein J, Bertsekas D P (1992) On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators. Math Programming 55: 293–318

    Article  MATH  Google Scholar 

  10. Ekeland I, Temam R (1973) Analyse Convexe et Problèmes Variationnelles. Dunod, Gauthier-Villars, Paris

    Google Scholar 

  11. Fortin M (1976) Minimization of some non-differentiable functionals by the augmented Lagrangian method of Hestenes and Powell. Appl Math Optim 2: 236–250

    Article  Google Scholar 

  12. Fortin M, Glowinski R, eds (1982) Méthodes de Lagrangien Augmenté: Applications à la Résolution Numérique de Problèmes aux Limites. Dunod-Bordas, Paris

    Google Scholar 

  13. Gabay D (1982) Application de la méthode des multiplicateurs aux inéquations variationnelles. In: Méthodes de Lagrangien Augmenté (Fortin M, Glowinski R, eds). Dunod-Bordas, Paris, pp 279–307

    Google Scholar 

  14. Glowinski R (1984) Numerical Methods for Nonlinear Variational Problems. Springer-Verlag, New York

    MATH  Google Scholar 

  15. Glowinski R, Le Tallec P (1989) Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics. SIAM, Philadelphia, PA

    MATH  Google Scholar 

  16. Glowinski R, Lions J L, Trémolièrs R (1981) Numerical Analysis of Variational Inequalities. North-Holland, Amsterdam

    MATH  Google Scholar 

  17. Gabay D, Mercier B (1976) A dual algorithm for the solution of nonlinear variational problems via finite element approximations. Comput Math Appl 2: 17–40

    Article  MATH  Google Scholar 

  18. Lions P L (1978) Une méthode itérative de resolution d’une inequation variationnelle. Israel J Math 31: 204–208

    MATH  Google Scholar 

  19. Le Tallec P (1990) Numerical Analysis of Viscoelastic Problems. Masson, Paris; Springer-Verlag, Berlin

    MATH  Google Scholar 

  20. Le Tallec P (1994) Domain decomposition methods in computational mechanics. Comput Mech Adv 1: 121–220

    MATH  Google Scholar 

  21. Lions P L, Mercier B (1979) Splitting algorithms for the sum of two nonlinear operators. SIAM J Numer Anal 16: 964–979

    Article  MATH  Google Scholar 

  22. Moreau J J (1965) Proximité et dualité dans une espace hilbertiane. Bull Soc Math France 93: 273–299

    MATH  Google Scholar 

  23. Mosco U (1972) Dual variational inequalities. J Math Anal Appl 40: 202–206

    Article  MATH  Google Scholar 

  24. Pazy A (1979) Semi-groups of nonlinear contractions and their asymptotic behaviour. In Nonlinear Mechanics (Knops R J, ed). Pitman, London, pp 36–134

    Google Scholar 

  25. Rockafellar R T (1976) Monotone operators and the proximal point algorithm. SIAM J Control Optim 14: 877–898

    Article  MATH  Google Scholar 

  26. Tseng P (1991) Applications of splitting algorithm to decomposition in convex programming and variational inequalities. SIAM J Control Optim 29: 119–138

    Article  MATH  Google Scholar 

  27. Tseng P, Bertsekas D P (1993) On the convergence of the exponential multiplier method for convex programming. Math Programming 60: 1–19

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by R. Temam

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alduncin, G. On Gabay’s algorithms for mixed variational inequalities. Appl Math Optim 35, 21–44 (1997). https://doi.org/10.1007/BF02683318

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02683318

Key Words

AMS Classification

Navigation