Skip to main content
Log in

Nonsmooth semipermeable barriers, Isaacs’ equation, and application to a differential game with one target and two players

  • Published:
Applied Mathematics and Optimization Submit manuscript

Abstract

We study the target problem which is a differential game where one of the players aims at reaching a target while the other player aims at avoiding this target forever. We characterize the victory domains of the players by means of geometric conditions and prove that the boundary of the victory domains is a nonsmooth semipermeable surface, i.e., is a solution (in a weak sense) of the Isaacs equation: sup u inf v f (x, u, v),p〉 = 0, wheref is the dynamic of the system,u andv are the respective controls of the players, andp is a normal to the boundary of the victory domains at the pointx.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aubin, J.-P. (1989), Contingent Isaacs’ equation of a differential game, in Differential Games and Applications, T. Başar and P. Bernhard, eds., Lecture Note in Control and Information Sciences, Springer-Verlag, Berlin, pp. 51–61.

    Chapter  Google Scholar 

  2. Aubin, J.-P. (1991), Viability Theory, Birkhäuser, Boston.

    MATH  Google Scholar 

  3. Aubin, J.-P., and Frankowska, H. (1990), Set-Valued Analysis, Birkhäuser, Boston.

    MATH  Google Scholar 

  4. Aubin, J.-P., and Frankowska, H. (1991), Feedback controls for uncertain systems, in Modeling, Estimation and Control with Uncertainty, Di Masi, Gombani, Kurzhansky, eds., Birkhäuser, Boston, pp. 1–21.

    Google Scholar 

  5. Bernhard, P. (1979), Contribution à l’étude des Jeux Différentiels à deux joueurs, somme nulle, et information parfaite, Thèse de Doctorat d’Etat, Université Pierre et Marie Curie, Paris 6.

    Google Scholar 

  6. Bernhard, P. (1988), Differential games: closed loop, in Systems and Control Encyclopedia, Theory, Technology Applications, M. G. Singh, ed., Pergamon Press, Oxford.

    Google Scholar 

  7. Bernhard, P. (1988), Differential games, Isaacs equation, in Systems and Control Encyclopedia, Theory, Technology Applications, M. G. Singh, ed., Pergamon Press, Oxford.

    Google Scholar 

  8. Bony, J. M. (1969), Principe du maximum, inégalité de Harnack et unicité du problème de Cauchy pour les opérateurs elliptiques dégénérés, Ann. Inst. Fourer (Grenoble), Vol. 19, No. 1, pp. 277–304.

    MATH  Google Scholar 

  9. Breakwell, J. V. (1977), Zero-sum differential games with terminal payoff, in Differential Game and Applications, P. Hagedorn, H. W. Knobloch, and G. H. Olsder, eds., Lecture Notes in Control and Information Sciences, Vol. 3, Springer-Verlag, Berlin.

    Chapter  Google Scholar 

  10. Cardaliaguet, P. (1994), Domaines discriminants en jeux différentiels, Thèse, Université Paris-Dauphine, Paris 16.

    Google Scholar 

  11. Cardaliaguet, P. (1996) A differential game with two players and one target, SIAM J. Control Optim., Vol. 34, No. 4, pp. 1441–1460

    Article  MATH  Google Scholar 

  12. Cardaliaguet, P., Quincampoix, M., and Saint-Pierre, P. (1994), Some algorithms for a game with two players and one target, M2AN, Vol. 28, No. 4, pp. 441–461

    MATH  Google Scholar 

  13. Crandall, M., and Newcomb, R. (1985), Viscosity solutions of Hamilton-Jacobi equations at the boundary, Proc. Amer. Meth. Soc., Vol. 94, No. 2, pp. 283–290.

    Article  MATH  Google Scholar 

  14. Elliot, N. J., and Kalton, N. J. (1972), The existence of value in differential games of pursuit and evasion, J. Differential Equations, Vol. 12, pp. 504–523.

    Article  Google Scholar 

  15. Frankowska, H., and Quincampoix, M. (1992), Isaacs’ Equations for Value-Functions of Differential Games, International Series of Numerical Mathematics, Vol. 107, Birkhäuser Verlag, Basel.

    Google Scholar 

  16. Isaacs, R. (1965), Differential Games, Wiley, New York.

    MATH  Google Scholar 

  17. Krasovskii, N. N., and Subbotin, A. I. (1988), Game-Theorical Control Problems, Springer-Verlag, New York.

    Google Scholar 

  18. Quincampoix, M. (1991), Playable differential games, J. Math. Anal. Appl., Vol. 161, No. 1, pp. 194–211.

    Article  MATH  Google Scholar 

  19. Quincampoix, M. (1992). Differential inclusion and target problem, SIAM J. Control Optim., Vol. 30, No. 2, pp. 324–335.

    Article  MATH  Google Scholar 

  20. Saint-Pierre, P. (1991), Viability of boundary of the viability kernel, J. Differential Integral Equations, Vol. 4, No. 3, pp. 1147–1153.

    MATH  Google Scholar 

  21. Veliov, V. M. (1993), Sufficient condition for viability under imperfect measurement, Set Valued Anal., Vol. 1, No. 3, pp. 305–317.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cardaliaguet, P. Nonsmooth semipermeable barriers, Isaacs’ equation, and application to a differential game with one target and two players. Appl Math Optim 36, 125–146 (1997). https://doi.org/10.1007/BF02683340

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02683340

Key Words

AMS Classification

Navigation