Skip to main content
Log in

Experimental nutrient enrichment causes complex changes in seagrass, microalgae, and macroalgae community structure in Florida Bay

  • Published:
Estuaries Aims and scope Submit manuscript

Abstract

We examined the spatial extent of nitrogen (N) and phosphorus (P) limitation of each of the major benthic primary producer groups in Florida Bay (seagrass, epiphytes, macroalgae, and benthic microalgae) and characterized the shifts in primary producer community composition following nutrient enrichment. We established 24 permanent 0.25-m2 study plots at each of six sites across. Florida Bay and added N and P to the sediments in a factorial design for 18 mo. Tissue nutrient content of the turtlegrassThalassia testudinum revealed a spatial pattern in P limitation, from severe limitation in the eastern bay (N:P>96:1), moderate limitation in two intermediate sites (approximately 63:1), and balanced with N availability in the western bay (approximately 31:1). P addition increasedT. testudinum cover by 50–75% and short-shoot productivity by up to 100%, but only at the severely P-limited sites. At sites with an ambient N:P ratio suggesting moderate P limitation, few seagrass responses to nutrients occurred. Where ambientT. testudinum tissue N:P ratios indicated N and P availability was balanced, seagrass was not affected by nutrient addition but was strongly influenced by disturbance (currents, erosion). Macroalgal and epiphytic and benthic microalgal biomass were variable between sites and treatments. In general, there was no algal overgrowth of the seagrass in enriched conditions, possibly due to the strength of seasonal influences on algal biomass or regulation by grazers., N addition had little effect on any benthic primary producers throughout the bay. The Florida Bay benthic primary producer community was P limited, but P-induced alterations of community structure were not uniform among primary producers or across Florida Bay and did not always agree with expected patterns of nutrient limitation based on stoichiometric predictions from field assays ofT. testudinum tissue, N:P ratios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Admiraal, W. 1984. The ecology of sediment-inhabiting diatoms.Progress on Phycological Research 3:269–322.

    Google Scholar 

  • Agawin, N. S. R., C. M. Duarte, andM. D. Fortes., 1996. Nutrient limitation of Philippine seagrasses (Cape Bolinao, NW Philippines): In situ experimental evidence.Marine Ecology Progress Series 138:233–243.

    Article  Google Scholar 

  • Atkinson, M. J. andS. V. Smith. 1983. C:N:P ratios of benthic marine plants.Limnology and Oceanography 28:568–574.

    CAS  Google Scholar 

  • Bargali, K. 1997. Role of light, moisture, and nutrient availability in replacement ofQuercus leucotrichophora byPinus roxburghii in Central Himalaya.Journal of Tropical Forest Science 10: 262–270.

    Google Scholar 

  • Borum, J. andK. Sand-Jensen. 1996. Is total primary production in shallow coastal marine waters stimulated by nitrogen loading?Oikos 76:406–410.

    Article  Google Scholar 

  • Boyer, K. E., P. Fong, A. R. Armitage, andR. A. Cohen. 2004. Elevated nutrient content of tropical macroalgae increases rates of herbivory in coral, seagrass, and mangrove habitats.Coral Reefs 23:530–538.

    Google Scholar 

  • Brand, L. E. 2002. The transport of terrestrial nutrients to South Florida coastal waters, p. 361–411.In J. W. Porter and K. G. Porter (eds.), The Everglades, Florida Bay, and Coral Reefs of the Florida Keys: An Ecosystem Sourcebook. CRC Press, Boca Raton, Florida.

    Google Scholar 

  • Burdige, D. J. andR. C. Zimmerman. 2002. Impact of sea grass density on carbonate dissolution in Bahamian sediments.Limnology and Oceanography 47:1751–1763.

    Article  CAS  Google Scholar 

  • Cardoso, P. G., M. A. Pardal, A. I. Lillebø, S. M. Ferreira, D. Raffaelli, andJ. C. Marques. 2004. Dynamic changes in seagrass assemblages under eutrophication and implications for recovery.Journal of Experimental Marine Biology and Ecology 302: 233–248.

    Article  Google Scholar 

  • Carrick, H. J. andR. L. Lowe. 1988. Response of Lake Michigan benthic algae to in situ enrichment with silicon, nitrogen, and phosphorus.Canadian Journal of Fisheries and Aquatic Sciences 45:271–279.

    CAS  Google Scholar 

  • Chambers, R. M., J. W. Fourqurean, S. A. Macko, andR. Hoppenot. 2001. Biogeochemical effects of iron availability on primary producers in a shallow marine carbonate environment.Limnology and Oceanography 46:1278–1286.

    Article  CAS  Google Scholar 

  • Collado-Vides, L., J. González-González, andM. Gold-Morgan. 1994. A descriptive approach to the floating masses of algae of a Mexican Caribbean coastal lagoon.Botanica Marina 37:391–396.

    Article  Google Scholar 

  • Craft, C. B. andC. J. Richardson. 1997. Relationships between soil nutrients and plant species composition in Everglades peatlands.Journal of Environmental Quality 26:224–232.

    Article  CAS  Google Scholar 

  • Duarte, C. M. 1990. Seagrass nutrient content.Marine Ecology Progress Series 67:201–207.

    Article  Google Scholar 

  • Duarte, C. M. 1995. Submerged aquatic vegetation in relation to different nutrient regimes.Ophelia 41:87–112.

    Google Scholar 

  • Duarte, C. M., M. Merino, andM. Gallegos. 1995. Evidence of iron deficiency in seagrasses growing above carbonate sediments.Limnology and Oceanography 40:1153–1158.

    Article  CAS  Google Scholar 

  • Erftemeijer, P. L. A., J. Stapel, M. J. E. Smekens., andW. M. E. Drossaert. 1994. The limited effect of in situ phosphorus and nitrogen additions to seagrass beds on carbonate and terrigenous sediments in South Sulawesi, Indonesia.Journal of Experimental Marine Biology and Ecology 182:123–140.

    Article  CAS  Google Scholar 

  • Ferdie, M. andJ. W. Fourqurean. 2004. Responses of seagrass communities to fertilization along a gradient of relative availability of nitrogen and phosphorus in a carbonate environment.Limnology and Oceanography 49:2082–2094.

    Article  Google Scholar 

  • Fong, P., K. E. Boyer, K. Kamer, andK. A. Boyle. 2003. Influence of initial tissue nutrient status of tropical marine algae on response to nitrogen and phosphorus additions.Marine Ecology Progress Series 262:111–123.

    Article  Google Scholar 

  • Fourqurean, J. W., M. J. Durako, M. O. Hall, andL. N. Hefty. 2002. Seagrass distribution in South Florida: A multi-agency coordinated monitoring program, p. 497–522.In J. W. Porter and K. G. Porter (eds.) The Everglades, Florida Bay, and Coral Reefs of the Florida Keys: An Ecosystem Sourcebook. CRC Press, Boca Raton, Florida.

    Google Scholar 

  • Fourqurean, J. W., R. D. Jones andJ. C. Zieman. 1993. Processes influencing water column nutrient characteristics and phosphorus limitation of phytoplankton biomass in Florida Bay, FL, USA: Inferences from spatial distributions.Estuarine, Coastal and Shelf Science 36:295–314.

    Article  CAS  Google Scholar 

  • Fourqurean, J. W., G. V. N. Powell, W. J. Kenworthy andJ. C. Zieman. 1995. The effects of long-term manipulation of nutrient supply on competition between the seagrassesThalassia testudinum andHalodule wrightii in Florida Bay.Oikos 72: 349–358.

    Article  Google Scholar 

  • Fourqurean, J. W. andJ. C. Zieman. 2002. Nutrient content of the seagrassThalassia testudinum reveals regional patterns of relative availability of nitrogen and phosphorus in the Florida Keys USA.Biogeochemistry 61:229–245.

    Article  CAS  Google Scholar 

  • Fourqurean, J. W., J. C. Zieman, andG. V. N. Powell. 1992. Phosphorus limitation of primary production in Florida Bay: Evidence from C:N:P ratios of the dominant seagrassThalassia testudinum.Limnology and Oceanography 37:162–171.

    Article  CAS  Google Scholar 

  • Frankovich, T. A. andJ. C. Zieman. 1994. Total epiphyte and epiphytic carbonate production ofThalassia testudinum across Florida Bay.Bulletin of Marine Science 54:679–695.

    Google Scholar 

  • Frankovich, T. A. andJ. C. Zieman. 2005. Grazer dynamics, nutrients, and seagrass leaf controls on epiphyte loading.Estuaries 28:41–52.

    Google Scholar 

  • Hauxwell, J., J. Cebrian, C. Furlong, andI. Valiela. 2001. Macroalgal canopies contribute to eelgrass (Zostera marina) decline in temperate estuarine ecosystems.Ecology 82:1007–1022.

    Google Scholar 

  • Heck, Jr.,K. L., J. R. Pennock, J. F. Valentine, L. D. Coen, andS. A. Sklenar. 2000. Effects of nutrient enrichment and small predator density on seagrass ecosystems: An experimental assessment.Limnology and Oceanography 45:1041–1057.

    Article  CAS  Google Scholar 

  • Howarth, R. W. 1988. Nutrient limitation of net primary production in marine ecosystems, p. 89–110.In R. F. Johnston (ed.), Annual Review of Ecology and Systematics, Volume 19. Annual Reviews Inc., Palo Alto, California.

    Google Scholar 

  • Ibarra-Obando, S. E., K. L. J. Heck, andP. M. Spitzer 2004. Effects of simultaneous changes in light, nutrients, and herbivory levels, on the structure and function of a subtropical turtlegrass meadow.Journal of Experimental Marine Biology and Ecology 301:193–224.

    Article  Google Scholar 

  • Jeffrey, S. W. andG. F. Humphrey. 1975. New spectrophotometric equations for determining chlorophylls,a, b,c1, andc2 in higher plants, algae and natural phytoplankton.Biochemie und Physiologie der Pflanzen 167:191–194.

    CAS  Google Scholar 

  • Jensen, H. S., K. J. McGlathery, R. Marino, andR. W. Howarth. 1998. Forms and availability of sediment phosphorus in carbonate sand of Bermuda seagrass beds.Limnology and Oceanography 43:799–810.

    Article  CAS  Google Scholar 

  • Kennish, M. J. 2002. Environmental threats and environmental future of estuaries.Environmental Conservation 29:78–107.

    Article  Google Scholar 

  • Koch, M. S., R. E. Benz, andD. T. Rudnick. 2001. Solid-phase phosphorus pools in highly organic carbonate sediments of northeastern Florida Bay.Estuarine Coastal and Shelf Science 52: 279–291.

    Article  CAS  Google Scholar 

  • Kuffner, I. B. andV. J. Paul. 2001. Effects of nitrate, phosphate, and iron on the growth of macroalgae and benthic cyanobacteria from Cocos Lagoon, Guam.Marine Ecology Progress Series 222:63–72.

    Article  CAS  Google Scholar 

  • Lapointe, B. E. 1989. Macroalgal production and nutrient relations in oligotrophic areas of Florida Bay.Bulletin of Marine Science 44:312–323.

    Google Scholar 

  • Lapointe, B. E. andP. J. Barile 2004. Comment on J. C. Zieman, J. W. Fourqurean, and T. A. Frankovich. “Seagras dieoff in Florida Bay: Long-term trends in abundance and growth of turtle grass,Thalassia testudinum.” 1999.Estuaries 22: 460–470.Estuaries 27:157–164.

    Google Scholar 

  • Larned, S. T. 1998. Nitrogen-versus phosphorus-limited growth and sources of nutrients for coral reef macroalgae.Marine Biology 132:409–421.

    Article  Google Scholar 

  • Lavrentyev, P. J., H. A. Bootsma, T. H. Johengen, J. F. Cavaletto, andW. S. Gardner. 1998. Microbial plankton response to resource limitation: Insights from the community structure and seston stoichiometry in Florida Bay, USA.Marine Ecology Progress Series 165:45–57.

    Article  CAS  Google Scholar 

  • Lee, K.-S. andK. H. Dunton. 2000. Effects of nitrogen enrichment on biomass allocation, growth, and leaf morphology of the seagrassThalassia testudinum.Marine Ecology Progress Series 196:39–48.

    Article  CAS  Google Scholar 

  • Lewis, M. A., D. E. Weber, L. R. Goodman, R. S. Stanley, W. G. Craven, J. M. Patrick, R. L. Quarles, T. H. Roush, andJ. M. Macauley. 2000. Periphyton and sediment bioassessment in north Florida Bay.Environmental Monitoring and Assessment 65:503–522.

    Article  CAS  Google Scholar 

  • Marbà, N. andC. M. Duarte. 2003. Scaling of ramet size and spacing in seagrasses: Implications for stand development.Aquatic Botany, 77:87–98.

    Article  Google Scholar 

  • Marbà, N., M. A. Hemminga, M. A. Mateo, C. M. Duarte, Y. E. M. Mass, J. Terrados, andE. Gacia. 2002. Carbon and nitrogen translocation between seagrass ramets.Marine Ecology Progress Series 226:287–300.

    Article  Google Scholar 

  • Matheson, Jr.,R. E., D. K. Camp, S. M. Sogard, andK. A. Bjorgo. 1999. Changes in seagrass-associated fish and crustacean communities on Florida Bay mud banks: The effects of recent ecosystem changes?Estuaries 22:534–551.

    Article  Google Scholar 

  • McClanahan, T. R. 1992. Epibenthic gastropods of the middle Florida Keys: The role of habitat and environmental stress on assemblage composition.Journal of Experimental Marine Biology and Ecology 160:169–190.

    Article  Google Scholar 

  • McGlathery, K. J. 1995. Nutrient and grazing influences on a subtropical seagrass community.Marine Ecology Progress Series 122:239–252.

    Article  Google Scholar 

  • McGlathery, K. J. 2001. Macroalgal blooms contribute to the decline of seagrass in nutrient-enriched coastal waters.Journal of Phycology 37:453–456.

    Article  Google Scholar 

  • McGlathery, K. J., P. Berg, andR. Marino. 2001. Using porewater profiles to assess nutrient availability in seagrass-vegetated carbonate sediments.Biogeochemistry 56:239–263.

    Article  CAS  Google Scholar 

  • MCSM. 2001. Monroe Country Stormwater Management Master Plan: Volume 1; Section 2.3; Pollution loads targets and analysis. Monroe County, Key West, Florida.

    Google Scholar 

  • Moncreiff, C. A., M. J. Sullivan, andA. E. Daehnick. 1992. Primary production dynamics in seagrass beds of Mississippi Sound: The contributions of seagrass, epiphytic algae, sand microflora, and phytoplankton.Marine Ecology Progress Series 87:161–171.

    Article  Google Scholar 

  • Mutchler, T., M. J. Sullivan, andB. Fry. 2004. Potential of14N isotope enrichment to resolve ambiguities in coastal trophic relationships.Marine Ecology Progress Series 266:27–33.

    Article  Google Scholar 

  • Nilsson, P., B. Jonsson, I. Lindstrom, andK. Sundbäck. 1991. Response of a marine shallow-water sediment system to an increased load of inorganic nutrients.Marine Ecology Progress Series 71:275–290.

    Article  Google Scholar 

  • Nixon, S. W. 1995. Coastal marine eutrophication: A definition, social causes, and future concerns.Ophelia 41:199–219.

    Google Scholar 

  • Powell, G. V. N., W. J. Kenworthy, andJ. W. Fourqurean. 1989. Experimental evidence for nutrient limitation of seagrass growth in a tropical estuary with restricted circulation.Bulletin of Marine Science 44:324–340.

    Google Scholar 

  • Quinn G. P. andM. J. Keough. 2002. Experimental Design and Data Analysis for Biologists. Cambridge University Press, Cambridge Massachusetts.

    Google Scholar 

  • Rudnick, D. T., Z. Chen, D. L. Childers, J. N. Boyer, andT. D. Fontaine, III. 1999. Phosphorus and nitrogen inputs to Florida Bay: The importance of the Everglades watershed.Estuaries 22:398–416.

    Article  CAS  Google Scholar 

  • Short, F. T., M. W. Davis, R. A. Gibson, andC. F. Zimmermann. 1985. Evidence for phosphorus limitation in carbonate sediments of the seagrassSyringodium filiforme.Estuarine Coastal and Shelf Science 20:419–430.

    Article  CAS  Google Scholar 

  • Smith, V. H., G. D. Tilman, andJ. C. Nekola. 1999. Eutrophication: Impacts of excess nutrient inputs on freshwater., marine, and terrestrial ecosystems.Environmental Pollution 100: 179–196.

    Article  CAS  Google Scholar 

  • Tomas, C. R., B. Bendis, andK. Johns. 1999. Role of nutrients in regulating plankton blooms in Florida Bay, p. 323–337.In H. Kumpf, K. Steidinger, and K. Sherman (eds.) The Gulf of Mexico Large Marine Ecosystem. Blackwell Science, Malden, Massachusetts.

    Google Scholar 

  • Tomasko, D. A. andB. E. Lapointe. 1991. Productivity and biomass ofThalassia testudinum as related to water column nutrient availability and epiphyte levels: Field observations and experimental studies.Marine Ecology Progress Series 75:9–17.

    Article  Google Scholar 

  • Udy, J. W. andW. C. Dennison. 1997. Growth and physiological responses of three seagrass species to elevated sediment nutrients in Moreton Bay, Australia.Journal of Experimental Marine Biology and Ecology 217:253–277.

    Article  Google Scholar 

  • Udy, J. W., W. C. Dennison, W. J. Lee Long, andL. J. McKenzie. 1999. Responses of seagrass to nutrients in the Great Barrier Reef, Australia.Marine Ecology Progress Series 185:257–271.

    Article  CAS  Google Scholar 

  • Valentine, J. F. andK. L. Heck, Jr. 2001. The role of leaf nitrogen content in determining turtlegrass (Thalassia testudinum) grazing by a generalized herbivore in the northeastern Gulf of Mexico.Journal of Experimental Marine Biology and Ecology 258:65–86.

    Article  CAS  Google Scholar 

  • Valiela, I., J. McClelland, J. Hauxwell, P. J. Behr, D. Hersh, andK. Foreman. 1997. Macroalgal blooms in shallow estuaries: Controls and ecophysiological and ecosystem consequences.Limnology and Oceanography 42:1105–1118.

    Article  Google Scholar 

  • van Montfrans, J., R. J. Orth, andS. A. Vay. 1982. Preliminary studies of grazing byBittum varium on eelgrass periphyton.Aquatic Botany 14:75–89.

    Article  Google Scholar 

  • Welschmeyer, N. A. 1994. Fluorometric analysis of chlorophylla in the presence of chlorophyllb and pheopigments.Limnology and Oceanography 39:1985–1992.

    Article  CAS  Google Scholar 

  • Williams, S. L. andM. H. Ruckelshaus. 1993. Effects of nitrogen availability and herbivory on eelgrass (Zostera marina) and epiphytes.Ecology 74:904–918.

    Article  Google Scholar 

  • Zieman, J. C., J. W. Fourqurean, andT. A. Frankovich. 1999. Seagrass die-off in Florida Bay: Long-term trends in abundance and growth of turtle grass,Thalassia testudinum.Estuaries 22:460–470.

    Article  Google Scholar 

  • Zieman, J. C., J. W. Fourqurean, andR. L. Iverson. 1989. Distribution, abundance and productivity of seagrasses and macroalgae in Florida Bay.Bulletin of Marine Science 44:292–311.

    Google Scholar 

  • Zupo, V. andW. G. Nelson. 1999. Factors influencing the association patterns ofHippolyte zostericola andPalaemonetes intermedius (Decapoda: Natantia) with seagrasses of the Indian River Lagoon, Florida.Marine Biology 134:181–190.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna R. Armitage.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Armitage, A.R., Frankovich, T.A., Heck, K.L. et al. Experimental nutrient enrichment causes complex changes in seagrass, microalgae, and macroalgae community structure in Florida Bay. Estuaries 28, 422–434 (2005). https://doi.org/10.1007/BF02693924

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02693924

Keywords

Navigation