Skip to main content
Log in

The mechanism of adsorption of aurocyanide onto activated carbon

  • Published:
Metallurgical Transactions B Aims and scope Submit manuscript

An Erratum to this article was published on 01 December 1989

Abstract

The mechanism of adsorption of aurocyanide onto activated carbon and its subsequent élution are examined in this study, with special reference to the effects of acid and alkali treatment on the system. The results, including a careful analysis of the distribution of all ions in the ad-sorption and elution processes, are discussed, and evidence for the adsorption and elution mech-anisms involved is presented. It is proposed that, under normal plant conditions, aurocyanide is extracted onto activated carbon in the form of an ion pair, Mn+[Au(CN)2]n], and eluted by hydroxide or cyanide. The hydroxide or cyanide ions react with the carbon surface, rendering it relatively hydrophilic with a decreased affinity for neutral species. Additional adsorption mechanisms are shown to operate under other conditions of ionic strength, pH, and temperature, and it is suggested that this may account in part for the lack of agreement among workers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.A. Laxen:Hydrometallurgy, 1984, vol. 13, pp. 169–92.

    Article  Google Scholar 

  2. A.W. Allen:Metall. Chem. Eng., 1918, vol. 18 (12), pp. 642–44.

    Google Scholar 

  3. J. Gross and J.W. Scott: Technical Paper No. 378, U.S. Bureau of Mines, Washington, DC, 1927.

    Google Scholar 

  4. V.A. Garten and D.E. Weiss:Rev. Pure Appl. Chem., 1957, vol. 7, pp. 69–121.

    Google Scholar 

  5. I.N. Plaskin:Metallurgy of Noble Metals, Metallurgizolat, 1958.

  6. V.M. Kuzminykh and N.G. Tyurin:lzv. Vyssh. Ucheb. Zaved. Tsved. Metall., 1968, vol. 11 (4), pp. 65–70.

    Google Scholar 

  7. R.J. Davidson:J. S. Afr. Inst. Min. Metall., 1974, vol. 75 (4), pp. 67–76.

    Google Scholar 

  8. A.I. Grabovskii, L.S. Ivanova, N.B. Korostyshevskii, R.K. Shirshov, R.K. Stovozhuk, E.S. Matskevich, and N.A. Arkadakskaya:Zh. Prikl. Khimii, 1976, vol. 49 (6), p. 1379. 9. S. Dixon, E. Cho, and C.H. Pitt: American Institute of Chemical Engineers, Symposium Series, 1978, vol. 147, part 173, pp. 75−83.

    Google Scholar 

  9. G.J. McDougall, R.D. Hancock, M.J. Nicol, O.L. Wellington, and R.G. Copperthwaite:J. S. Afr. Inst. Min. Metall., 1980, vol. 80 (9), pp. 344–56.

    Google Scholar 

  10. N. Tsuchida, M. Ruane, and D.M. Muir:MINTEK 50, Proc. of the Int. Conf. on Mineral Science and Technology, L.F.Haughton, ed., Council for Mineral Technology, Randburg,South Africa, 1984, vol. 2, pp. 647–56.

    Google Scholar 

  11. CA. Fleming and M.J. Nicol:J. S. Afr. Inst. Min. Metall., 1984, vol. 84 (4), pp. 85–93.

    Google Scholar 

  12. M.D. Adams and M.J. Nicol:Gold 100, Proc. of the Int. Conf. on Gold, C.E. Fivaz and R.P. King, eds., The South African Institute of Mining and Metallurgy, Johannesburg, South Africa,1986, vol. 2 pp. 111–21.

    Google Scholar 

  13. N. Tsuchida and D.M. Muir:Metall. Trans. B, 1986, vol. 17B, pp. 523–28.

    Article  Google Scholar 

  14. N. Tsuchida and D.M. Muir:Metall. Trans. B, 1986, vol. 17B, pp. 529–33.

    Article  Google Scholar 

  15. M.D. Adams, G.J. McDougall, and R.D. Hancock:Hydro- metallurgy, 1987, vol. 19, pp. 95–115.

    Google Scholar 

  16. G.J. McDougall and C.A. Fleming:Ion Exchange and Sorption Processes in Hydrometallurgy, M. Streat and D. Naden, eds., Society of Chemistry and Industry,Wiley, Chichester, 1987, pp. 56–126.

    Google Scholar 

  17. G.J. McDougall and R.D. Hancock:Gold Bull., 1981, vol. 14 (4), pp. 138–53.

    Article  Google Scholar 

  18. J.T. Cookson, Jr.:Carbon Adsorption Handbook, P.N.Cheremisinoff and F. Ellerbusch, eds., Ann Arbor, MI, 1978,pp. 241–79.

    Google Scholar 

  19. J.S. Mattson and H.B. Mark:Activated Carbon, Marcel Dekker,New York, NY, 1971.

    Google Scholar 

  20. B. Steenberg:Adsorption and Exchange of Ions on Activated Carbon, Almqvist and Wiksells, Uppsala, Sweden, 1944.

    Google Scholar 

  21. R.G. Kunz and J.F. Giannelli:Carbon, 1976, vol. 14, pp. 157–61.

    Article  Google Scholar 

  22. J.H. Clark, C.V.A. Duke, S.J. Brown, and J.M. Miller:Spectrochim. Acta, 1986, vol. 42A (7), pp. 811–14.

    Article  Google Scholar 

  23. J.D. Cashion, A.C. McGrath, P. Volz, and J.S. Hall:Inst. Min. Metall., Section C, 1988, vol. 97, pp. C129–33.

    Google Scholar 

  24. C. Klauber: CSIRO, Division of Mineral Products, Curtin University of Technology, G.P.O. Box U1987, Perth, W.A. 6001, Australia, 1988.

  25. M.D. Adams, G.J. McDougall, and R.D. Hancock:Hydro- metallurgy, 1987, vol. 18, pp. 139–54.

    Google Scholar 

  26. R.J. Davidson and V. Veronese:J. S. Afr. Inst. Min. Metall., 1979, vol. 79 (19), pp. 437–45.

    Google Scholar 

  27. G.J. McDougall: S.A. Patent No. 4-528-166, July 9, 1985.

  28. Stability Constants of Metal-Ion Complexes Section 2: Inorganic Ligands, L.G. Sillen and A.E. Martell, eds., Chemical Society,London, 1964, pp. 110–11.

    Google Scholar 

  29. Stability Constants of Metal-Ion complexes, Supplement No. 1, L.G. Sillen and A.E. Martell, eds., 1971, p. 55.

  30. E. Högfeldt:Stability Constants of Metal-Ion Complexes, Part A: Inorganic Ligands, Pergamon, Oxford, 1982, p. 81.

    Google Scholar 

  31. Dia-prosim: Duolite polymeric adsorbents, technical notes, France.

  32. A. Gupta and K. Ofori-Ansah:Proc. Australas. Inst. Min. Metall., 1984, no. 289, pp. 239–45.

    Google Scholar 

  33. E.H. Cho and C.H. Pitt:Metall. Trans. B, 1979, vol. 10B, pp. 159–64.

    Article  Google Scholar 

  34. T. Van Der Plas:Physical and Chemical Aspects of Adsorbents and Catalysts, B.G. Linsen, ed., Academic Press, London, 1970,pp. 456–69.

    Google Scholar 

  35. CRC Handbook of Chemistry and Physics, 60th Ed., R.C. Weast,ed., CRC Press, Cleveland, OH, 1979, p. D-166.

    Google Scholar 

  36. J.B. Hendrickson, D. J. Cram, and G.S. Hammond:Organic Chemistry, 3rd Ed., McGraw-Hill, New York, NY, 1970.

    Google Scholar 

  37. J.D. Roberts and M.C. Caserio:Modern Organic Chemistry,Benjamin, New York, NY, 1967, p. 319.

    Google Scholar 

  38. J. March:Advanced Organic Chemistry: Reactions, Mechanisms and Structure, 2nd Ed., McGraw-Hill, New York, NY, 1978, pp. 322–25.

    Google Scholar 

  39. F.E. Bernardin:J. Water Poll. Control Fed., 1973, vol. 45 (2), pp. 221–31.

    Google Scholar 

  40. A.T. Kuhn and C. Wilson:Oberfläche-Surface, 1977, vol. 18 (4), pp. 93–96.

    Google Scholar 

  41. V.M. Kuzminykh and N.G. Tyurin:Trudy Uralskogo Politeknikheskogo Instituta, 1967, vol. 155, pp. 123–25.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

A correction to this article is available at http://dx.doi.org/10.1007/BF02670203

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adams, M.D., Fleming, C.A. The mechanism of adsorption of aurocyanide onto activated carbon. Metall Trans B 20, 315–325 (1989). https://doi.org/10.1007/BF02696984

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02696984

Keywords

Navigation