Skip to main content
Log in

The deformation theory of representations of fundamental groups of compact Kähler manifolds

  • Published:
Publications Mathématiques de l'Institut des Hautes Études Scientifiques Aims and scope Submit manuscript

Abstract

Let Γ be the fundamental group of a compact Kähler manifold M and let G be a real algebraic Lie group. Let ℜ(Γ, G) denote the variety of representations Γ → G. Under various conditions on ρ ∈ ℜ(Γ, G) it is shown that there exists a neighborhood of ρ in ℜ(Γ, G) which is analytically equivalent to a cone defined by homogeneous quadratic equations. Furthermore this cone may be identified with the quadratic cone in the space\(Z^1 (\Gamma ,g_{Ad\rho } )\) of Lie algebra-valued l-cocycles on Γ comprising cocyclesu such that the cohomology class of the cup/Lie product square [u, u] is zero in\(H^2 (\Gamma ,g_{Ad\rho } )\). We prove that ℜ(Γ, G) is quadratic at ρ if either (i) G is compact, (ii) ρ is the monodromy of a variation of Hodge structure over M, or (iii) G is the group of automorphisms of a Hermitian symmetric space X and the associated flat X-bundle over M possesses a holomorphic section. Examples are given where singularities of ℜ(Γ, G) are not quadratic, and are quadratic but not reduced. These results can be applied to construct deformations of discrete subgroups of Lie groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arms, J., Marsden, J., andMoncrief, V., Symmetry and bifurcation of momentum mappings,Commun. Math. Phys.,78 (1981), 455–478.

    Article  MATH  MathSciNet  Google Scholar 

  2. Artin, M., On solutions to analytic equations,Inv. Math.,5 (1968), 277–291.

    Article  MATH  MathSciNet  Google Scholar 

  3. Atiyah, M. F. andBott, R., The Yang-Mills equations over a compact Riemann surface,Phil. Trans. Roy. Soc. London,A 308 (1982), 523–615.

    MathSciNet  Google Scholar 

  4. Chern, S. S., Geometry of characteristic classes, inProceedings of the Thirteenth Biennial Seminar, Canad. Math. Cong., Montreal (1972), 1–40.

  5. Corlette, K., Flat G-bundles with canonical metrics,J. Diff. Geo. (to appear).

  6. Corlette, K., Gauge theory and representations of Kähler groups, inThe Geometry of Group Representations (Proceedings of Amer. Math. Soc. Summer Conference 1987, Boulder, Colorado),Contemp. Math. (to appear).

  7. Corlette, K.,Rigid monodromy representations (in preparation).

  8. Deligne, P., Griffiths, P. A., Morgan, J. W. andSullivan, D., Rational homotopy type of compact Kähler manifolds,Inv. Math.,29 (1975), 245–274.

    Article  MATH  MathSciNet  Google Scholar 

  9. Donaldson, S. K., Anti-self-dual Yang-Mills connections over complex algebraic surfaces and stable vector bundles,Proc. Lond. Math. Soc.,50 (1985), 1–26.

    Article  MATH  MathSciNet  Google Scholar 

  10. Goldman, W. M., Representations of fundamental groups of surfaces, inGeometry and Topology, Proceedings, University of Maryland 1983–1984,J. Alexander andJ. Harer (eds.),Lecture Notes in Mathematics,1167, Berlin-Heidelberg-New York, Springer-Verlag (1985), 95–117.

    Google Scholar 

  11. Goldman, W. M., Topological components of spaces of representations,Inv. Math. (to appear).

  12. Goldman, W. M., andMillson, J. J., Local rigidity of discrete groups acting on complex hyperbolic space,Inv. Math.,88 (1987), 495–520.

    Article  MATH  MathSciNet  Google Scholar 

  13. Goldman, W. M. andMillson, J. J., Deformations of flat bundles over Kähler manifolds, inGeometry and Topology, Manifolds, Varieties and Knots,C. McCrory andT. Shifrin (eds.),Lecture Notes in Pure and Applied Mathematics,105, Marcel Dekker, New York-Basel (1987), 129–145.

    Google Scholar 

  14. Goldman, W. M. andMillson, J. J., Differential graded Lie algebras and singularities of level sets of momentum mapping, (submitted for publication).

  15. Greub, W., Halperin, S. andVanstone, R.,Connections, Curvature and Cohomology, Vol. II, Pure and Applied Mathematics,47, New York-London, Academic Press (1973).

    MATH  Google Scholar 

  16. Griffiths, P. A. et al., Topics in Transcendental Algebraic Geometry, Ann. of Math. Studies,106 (1984), Princeton, New Jersey, Princeton Univ. Press.

    Google Scholar 

  17. Gunning, R. C.,Complex Analytic Varieties: the Local Parametrization Theorem, Mathematical Notes, Princeton University Press (1970).

  18. Gunning, R. C. andRossi, H.,Analytic functions of several complex variables, Englewood Cliffs, New Jersey, Prentice-Hall (1965).

    MATH  Google Scholar 

  19. Jacobson, N.,Basic Algebra II, San Francisco, W. H. Freeman and Company (1980).

    MATH  Google Scholar 

  20. Johnson, D. andMillson, J., Deformation spaces associated to compact hyperbolic manifolds, inDiscrete Groups in Geometry and Analysis, Papers in Honor of G. D. Mostow on His Sixtieth Birthday,R. Howe (ed.),Progress in Mathematics,67, Boston-Basel-Stuttgart, Birkhäuser (1987), 48–106.

    Google Scholar 

  21. Kobayashi, S.,Differential Geometry of Holomorphic Vector Bundles, Princeton University Press and Mathematical Society of Japan (1987).

  22. Kobayashi, S. andNomizu, K.,Foundations of Differential Geometry, Volume 1, Interscience Tracts in Pure and Applied Mathematics,15 (1963), New York-London, John Wiley & Sons.

    Google Scholar 

  23. Kunz, E.,Introduction to Commutative Algebra and Algebraic Geometry (1985), Birkhäuser Boston, Inc.

  24. Lubotzky, A. andMagid, A.,Varieties of representations of finitely generated groups, Memoirs A.M.S.,336 (vol. 5) (1985).

  25. Morgan, J. W. andShalen, P. B., Valuations, trees and degenerations of hyperbolic structures I,Ann. Math.,120 (1984), 401–476.

    Article  MathSciNet  Google Scholar 

  26. Mumford, D.,Introduction to Algebraic Geometry, Harvard University lecture notes.

  27. Nadel, A. M.,Singularities and Kodaira dimension of the moduli space of flat Hermitian Yang-Mills connections, Harvard University preprint.

  28. Nijenhuis, A. andRichardson, R. W., Cohomology and deformation of algebraic structures,Bull. A.M.S.,70 (1964), 406–411.

    Article  MATH  MathSciNet  Google Scholar 

  29. Nijenhuis, A. andRichardson, R. W., Cohomology and deformations in graded Lie algebras,Bull. A.M.S.,72 (1966), 1–29.

    MATH  MathSciNet  Google Scholar 

  30. Nomizu, K., On the cohomology ring of compact homogeneous spaces of nilpotent Lie groups,Ann. Math.,59 (1954), 531–538.

    Article  MathSciNet  Google Scholar 

  31. Schlessinger, M., Functors of Artin rings,Trans. A.M.S.,130 (1968), 208–222.

    Article  MATH  MathSciNet  Google Scholar 

  32. Schlessinger, M. andStasheff, J.,Deformation theory and rational homotopy type, University of North Carolina preprint, 1979.

  33. Simpson, C. T.,Constructing variations of Hodge structure using Yang-Mills theory and applications to uniformization, Princeton University preprint.

  34. Simpson, C. T.,Higgs bundles and local systems, Princeton University preprint.

  35. Steenrod, N. E.,The topology of fiber bundles, Princeton Mathematical Series 14 (1951), Princeton New Jersey, Princeton University Press.

    Google Scholar 

  36. Toledo, D., Representations of surface groups in PSU (1,n) with nonvanishing characteristic number,J. Diff. Geo. (to appear).

  37. Uhlenbeck, K. andYau, S. T., On the existence of Hermitian-Yang-Mills connections in stable vector bundles,Comm. Pure and Appl. Math.,39 (1986), 257–293.

    Article  MATH  MathSciNet  Google Scholar 

  38. Wells, R. O.,Differential Analysis on Complex Manifolds, Graduate Texts in Math.,65 (1980), Berlin-Heidelberg-New York, Springer-Verlag.

    MATH  Google Scholar 

  39. Whitney, H.,Complex Analytic Varieties (1972), Addison-Wesley Inc., Reading, Massachusetts.

    MATH  Google Scholar 

  40. Zucker, S., Hodge theory with degenerating coefficients,Ann. Math.,109 (1979), 415–476.

    Article  MathSciNet  Google Scholar 

  41. Zucker, S., Locally homogeneous variations of Hodge structure,L’Ens. Math.,27 (1981), 243–276.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The first author was supported in part by National Science Foundation grant DMS-86-13576 and an Alfred P. Sloan Foundation Fellowship; the second by National Science Foundation grant DMS-85-01742.

About this article

Cite this article

Goldman, W.M., Millson, J.J. The deformation theory of representations of fundamental groups of compact Kähler manifolds. Publications Mathématiques de L’Institut des Hautes Scientifiques 67, 43–96 (1988). https://doi.org/10.1007/BF02699127

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02699127

Keywords

Navigation