Skip to main content
Log in

Can oyster restoration reverse cultural eutrophication in Chesapeake Bay?

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

We investigated the hypothesis that effects of cultural eutrophication can be reversed through natural resource restoration via addition of an oyster module to a predictive eutrophication model. We explored the potential effects of native oyster restoration on dissolved oxygen (DO), chlorophyll, light attenuation, and submerged aquatic vegetation (SAV) in eutrophic Chesapeake Bay. A tenfold increase in existing oyster biomass is projected to reduce system-wide summer surface chlorophyll by approximately 1 mg m−3, increase summer-average deep-water DO by 0.25 g m−3, add 2100 kg C (20%) to summer SAV biomass, and remove 30,000 kg d−1 nitrogen through enhanced denitrification. The influence of osyter restoration on deep extensive pelagic waters is limited. Oyster restoration is recommended as a supplement to nutrient load reduction, not as a substitute.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Anderson, L. 1995. On the hydrogen and oxygen content of marine phytoplankton.Deep-Sea Research I 42:1675–1680.

    Article  CAS  Google Scholar 

  • Andrews, J. 1965. Infection experiments in nature withDermocystidium marinum in Chesapeake Bay.Chesapeake Science 6:60–67.

    Article  Google Scholar 

  • Andrews, J. 1988. Epizoology of the disease caused by the oyster pathogenPerkinsus marinus and its effect on the oyster industry.American Fisheries Society Special Publication 18:47–63.

    Google Scholar 

  • Bicknell, B., J. Imhoff, J. Kittle, A. Donigian, R. Johanson, andT. Barnwell. 1996. Hydrologic simulation program—FORTRAN user’s manual for release 11. U.S. Environmental Protection Agency Environmental Research Laboratory, Athens, Georgia.

    Google Scholar 

  • Boucher, G. andR. Boucher-Rodoni. 1988. In situ measurement of respiratory metabolism and nitrogen fluxes at the interface of oyster beds.Marine Ecology Progress Series 44:229–238.

    Article  CAS  Google Scholar 

  • Boynton, W., J. Garber, R. Summers, andW. Kemp. 1995. Inputs, transformations, and transport of nitrogen and phosphorus in Chesapeake Bay and selected tributaries.Estuaries 18:285–314.

    Article  CAS  Google Scholar 

  • Caffrey, J. andW. Kemp. 1990. Nitrogen cycling in the sediments with estuarine populations ofPotamogeton perfoliatis L. andZostera marina L.Marine Ecology Progress Series 66:147–160.

    Article  CAS  Google Scholar 

  • Caffrey, J. andW. Kemp. 1992. Influence of the submersed plant,Potamogeton perfoliatis L., on nitrogen cycling in estuarine sediments: Use of15N techniques.Limnology and Oceanography 37:1483–1495.

    CAS  Google Scholar 

  • Caraco, N., J. Cole, S. Eindlay, D. Fischer, G. Lampman, M. Pace, andD. Strayer. 2000. Dissolved oxygen declines in the Hudson River associated with the invasion of the zebra mussel (Dreissena polymorpha).Environmental Science and Technology 34:1204–1210.

    Article  CAS  Google Scholar 

  • Caraco, N., J. Cole, andD. Strayer. 2006. Top-down control from the bottom: Regulation of eutrophication in a large river by benthic grazing.Limnology and Oceanography 51:664–670.

    Google Scholar 

  • Cerco, C. 1995. Response of Chesapeake Bay to nutrient load reductions.Journal of Environmental Engineering 121:549–557.

    Article  CAS  Google Scholar 

  • Cerco, C. andT. Cole. 1993. Three-dimensional eutrophication model of Chesapeake Bay.Journal of Environmental Engineering 119:1006–1025.

    Article  CAS  Google Scholar 

  • Cerco, C. andM. Meyers. 2000. Tributary refinements to the Chesapeake Bay Model.Journal of Environmental Engineering 126:164–174.

    Article  CAS  Google Scholar 

  • Cerco, C. andK. Moore. 2001. System-wide submerged aquatic vegetation model for Chesapeake Bay.Estuaries 24:522–534.

    Article  Google Scholar 

  • Cerco, C. andS. Seitzinger. 1997. Measured and modeled effects of benthic algae on eutrophication in Indian River-Rehoboth Bay, Delaware.Estuaries 20:231–248.

    Article  CAS  Google Scholar 

  • Cloern, J. 1982. Does the benthos control phytoplankton biomass in south San Francisco Bay?Marine Ecology Progress Series 9:191–202.

    Article  Google Scholar 

  • Cohen, R., P. Dresler, E. Phillips, andR. Cory. 1984. The effect of the Asiatic clam,Corbicula fluminea, on phytoplankton of the Potomac River, Maryland.Limnology and Oceanography 29:170–180.

    Google Scholar 

  • Cooper, S. andG. Brush. 1993. A 2,500-year history of anoxia and eutrophication in Chesapeake Bay.Estuaries 16:617–626.

    Article  CAS  Google Scholar 

  • Dame, R. 1972. Comparison of various allometric relationships in intertidal and subtidal American oysters.Fishery Bulletin 70:1121–1126.

    Google Scholar 

  • Dame, R., J. Spurrier, andR. Zingmark. 1992. In situ metabolism of an oyster reef.Journal of Experimental Marine Ecology and Biology 164:147–159.

    Article  Google Scholar 

  • Ditoro, D. 2001. Sediment Flux Modeling. John Wiley and Sons, New York.

    Google Scholar 

  • Doering, P., J. Kelly, C. Oviatt, andT. Sowers. 1987. Effect of the hard clamMercenaria mercenaria on benthic fluxes of inorganic nutrients and gases.Marine Biology 94:377–383.

    Article  CAS  Google Scholar 

  • Epifanio, C. andJ. Ewart. 1977. Maximum ration of four algal diets for the oysterCrassostrea virginica Gmelin.Aquaculture 11:13–29.

    Article  Google Scholar 

  • Fisher, T., E. Peele, J. Ammerman, andL. Harding. 1992. Nutrient limitation of phytoplankton in Chesapeake Bay.Marine Ecology Progress Series 82:51–63.

    Article  Google Scholar 

  • Flemer, D., G. Mackiernan, W. Nehlsen, andV. Tippie. 1983. Chesapeake Bay: A profile of environmental change. U.S. Environmental Protection Agency Region III, Philadelphia, Pennsylvania.

    Google Scholar 

  • Gerritsen, J., A. Holland, andD. Irvine. 1994. Suspension-feeding bivalves and the fate of primary production: An estuarine model applied to Chesapeake Bay.Estuaries 17:403–416.

    Article  Google Scholar 

  • Hammen, C., H. Miller, andW. Geer. 1966. Nitrogen excretion ofCrassostrea virginica.Comparative Biochemistry and Physiology 17: 1199–2000.

    Article  CAS  Google Scholar 

  • Haven, D. andR. Morales-Alamo. 1966. Aspects of biodeposition by oysters and other invertebrate filter feeders.Limnology and Oceanography 11:487–498.

    Google Scholar 

  • Hedges, J., J. Baldock, Y. Gelinas, C. Lee, M. Peterson, andS. Wakeham. 2002. The biochemical and elemental compositions of marine plankton: A NRM perspective.Marine Chemistry 78: 47–63.

    Article  CAS  Google Scholar 

  • Holland, A., N. Mountford, andJ. Mihursky. 1977. Temporal variation in upper bay mesohaline benthic communities: I. The 9-m mud habitat.Chesapeake Science 18:370–378.

    Article  Google Scholar 

  • Jenkins, M. andW. Kemp. 1984. The coupling of nitrification and denitrification in two estuarine sediments.Limnology and Oceanography 29:609–619.

    Article  CAS  Google Scholar 

  • Johnson, B., K. Kim, R. Heath, B. Hsieh, andL. Butler. 1993. Validation of a three-dimensional hydrodynamic model of Chesapeake Bay.Journal of Hydraulic Engineering 199:2–20.

    Article  Google Scholar 

  • Jordan, S. 1987. Sedimentation and remineralization associated with biodeposition by the American oysterCrassostrea virginica (Gmelin). Ph.D. Dissertation. University of Maryland, College Park, Maryland.

    Google Scholar 

  • Jordan, S. andJ. Coakley. 2004. Long-term projections of eastern oyster populations under various management scenarios.Journal of Shellfish Research 23:63–72.

    Google Scholar 

  • Jordan, S., K. Greenhawk, C. McCollough, J. Vanisko, andM. Homer. 2002. Oyster biomass, abundance, and harvest in northern Chesapeake Bay: Trends and forecasts.Journal of Shellfish Research 21:733–741.

    Google Scholar 

  • Kirby, M. andH. Miller. 2005. Response of a benthic suspension feeder (Crassostrea virginica Gmelin) to three centuries of anthropogenic eutrophication in Chesapeake Bay.Estuarine Coastal and Shelf Science 62:679–689.

    Article  Google Scholar 

  • Loosanoff, V. 1953. Behavior of oysters in water of low salinities.Proceedings of the National Shellfish Association 43:135–151.

    Google Scholar 

  • Loosanoff, V. andF. Tommers. 1948. Effect of suspended silt and other substances on rate of feeding of oysters.Science 107:69–70.

    Article  CAS  Google Scholar 

  • Magni, P., S. Montani, C. Takada, andH. Tsutsumi. 2000. Temporal scaling and relevance of bivalve nutrient excretion on a tidal flat of the Seto Inland Sea, Japan.Marine Ecology Progress Series 198:139–155.

    Article  Google Scholar 

  • Malone, T., D. Conley, T. Fisher, P. Glibert, andL. Harding. 1996. Scales of nutrient-limited phytoplankton productivity in Chesapeake Bay.Estuaries 19:371–385.

    Article  CAS  Google Scholar 

  • Merrill, J. andJ. Cornwell. 2000. The role of oligohaline marshes in estuarine nutrient cycling, p. 425–441.In M. Weinstein and D. Kreeger (eds.), Concepts and Controversies in Tidal Marsh Ecology. Kluwer, Dordrecht.

    Google Scholar 

  • National Research Council (NRC). 2000. Clean Coastal Waters. National Academy Press, Washington, D.C.

    Google Scholar 

  • National Research Council. (NRC). 2001. Assessing the TMDL Approach to Water Quality Management. National Academy Press, Washington, D.C.

    Google Scholar 

  • Newell, R. I. E. 1988. Ecological changes in Chesapeake Bay: Are they the result of overharvesting the American oyster (Crassostrea virginica)? p. 536–546.In M. P. Lynch and E. C. Krome (eds.), Understanding the Estuary—Advances in Chesapeake Bay Research, Publication 129, Chesapeake Research Consortium, Baltimore, Maryland.

    Google Scholar 

  • Newell, R. I. E., J. Cornwell, andM. Owens. 2002. Influence of simulated bivalve biodeposition and microphytobenthos on sediment nitrogen dynamics.Limnology and Oceanography 47: 1367–1379.

    Article  Google Scholar 

  • Newell, R. I. E. andE. Koch. 2004. Modeling seagrass density and distribution in response to changes in turbidity stemming from bivalve filtration and seagrass sediment stabilization.Estuaries 27:793–806.

    Article  Google Scholar 

  • Officer, C., R. Biggs, J. Taft, andL. Cronin. 1984. Chesapeake Bay anoxia: Origin, development, and significance.Science 223: 22–27.

    Article  CAS  Google Scholar 

  • Officer, C., T. Smayda, andR. Mann. 1982. Benthic filter feeding: A natural eutrophication control.Marine Ecology Progress Series 9: 203–210.

    Article  Google Scholar 

  • Phelps, H. 1994. The Asiatic clam (Corbicula fluminea) invasion and system-level ecological change in the Potomac River estuary near Washington, D.C.Estuaries 17:614–621.

    Article  Google Scholar 

  • Porter, E., J. Cornwell, L. Sanford, andR. I. E. Newell. 2004. Effect of oystersCrassostrea virginica and bottom shear velocity on benthic pelagic coupling and estuarine water quality.Marine Ecology Progress Series 271:61–75.

    Article  Google Scholar 

  • Pritchard, D. 1967. Observations of circulation in coastal plain estuaries, p. 37–44.In G. Lauff (ed.), Estuaries. American Association for the Advancement of Science, Washington, D.C.

    Google Scholar 

  • Riisgard, H. 1988. Efficiency of particle retention and filtration rate in 6 species of northeast American bivalves.Marine Ecology Progress Series 45:217–223.

    Article  Google Scholar 

  • Rothschild, B., J. Ault, P. Goulletquer, andM. Heral. 1994. Decline of the Chesapeake Bay oyster population: A century of habitat destruction and overfishing.Marine Ecology Progress Series 111:29–39.

    Article  Google Scholar 

  • Rybicki, N., H. Jenter, V. Carter, R. Baltzer, andM. Turtora. 1997. Observations of the tidal flux between a submersed aquatic plant stand and the adjacent channel in the Potomac River near Washington, D.C.Limnology and Oceanography 42: 307–317.

    Google Scholar 

  • Schindler, D. 2006. Recent advances in the understanding and management of eutrophication.Limnology and Oceanography 51: 356–363.

    Article  Google Scholar 

  • Shumway, S. andR. Koehn. 1982. Oxygen consumption in the American oysterCrassostrea virginica.Marine Ecology Progress Series 9:59–68.

    Article  Google Scholar 

  • Smith, V., S. Joye, andR. Howarth. 2006. Eutrophication of freshwater and marine ecosystems.Limnology and Oceanography 51:351–355.

    CAS  Google Scholar 

  • Srna, R. andA. Baggaley. 1976. Rate of excretion of ammonia by the hard clamMercenaria mercenaria and the American oysterCrassostrea virginica.Marine Biology 36:251–258.

    Article  CAS  Google Scholar 

  • Stevenson, J., M. Kearny, and E. Koch. 2002. Impacts of sea-level rise on tidal wetlands and shallow water habitats: A case study from Chesapeake Bay, p. 23–36.In N. McGinn (ed.), Fisheries in a Changing Environment. American Fisheries Society Symposium No. 32, Bethesda, Maryland.

  • Tenore, K. andW. Dunstan. 1973. Comparison of feeding and biodeposition of three bivalves at different food levels.Marine Biology 21:190–195.

    Article  Google Scholar 

  • Ward, L., W. Kemp, andW. Boynton. 1984. The influence of water depth and submerged vascular plants on suspended particulates in a shallow estuarine embayment.Marine Geology 59:85–103.

    Article  Google Scholar 

  • Winter, J. 1978. A review of the knowledge of suspension-feeding lamellibranchiate bivalves, with special reference to artificial aquaculture systems.Aquaculture 13:1–33.

    Article  Google Scholar 

  • Yates, C. 1911. Survey of the oyster bars by county of the State of Maryland. Department of Commerce and Labor, Coast and Geodetic Survey, Washington, D.C.

    Google Scholar 

Sources of Unpublished Materials

  • Mann, R. unpublished data. Virginia Institute of Marine Science, Gloucester Point, Virginia 23062.

  • Uphoff, J. unpublished data. Maryland Department of Natural Resources, Fisheries Service, 301 Marine Academy Drive, Stevensville, Maryland 21666.

  • Cerco, G. andM. Noel. 2004. The 2002 Chesapeake Bay eutrophication model. EPA 903-R-04-004. Chesapeake Bay Program Office, U.S. Environmental Protection Agency, Annapolis, Maryland (available athttp://www.chesapeakebay.net/modsc.htm).

    Google Scholar 

  • U.S. Environmental Protection Agency (USEPA). 2000. Chesapeake 2000. U.S. Environmental Protection Agency Region III Chesapeake Bay Program Office. Annapolis, Maryland (available athttp://www.chesapeakebay.net/agreement.htm.

    Google Scholar 

  • U.S. Environmental Protection Agency (USEPA). 2003. Ambient water quality criteria for dissolved oxygen, water clarity and chlorophylla for the Chesapeake Bay and its tidal tributaries. U.S. Environmental Protection Agency Region III Chesapeake Bay Program Office, EPA 903-R-03-002. Annapolis, Maryland (available athttp://www.chesapeakebay.net/baycriteria.htm).

  • U.S. Environmental Protection Agency (USEPA). 2004. Chesapeake Bay Program analytical segmentation scheme—Revisions, decisions, and rationales 1983–2003. U.S. Environmental Protection Agency Region III Chesapeake Bay Program Office. Annapolis MD. (available athttp://www.chesapeakebay.net/segmentscheme.htm)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carl F. Cerco.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cerco, C.F., Noel, M.R. Can oyster restoration reverse cultural eutrophication in Chesapeake Bay?. Estuaries and Coasts: JERF 30, 331–343 (2007). https://doi.org/10.1007/BF02700175

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02700175

Keywords

Navigation