Skip to main content
Log in

Fracture mechanics and surface chemistry studies of fatigue crack growth in an aluminum alloy

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

Fracture mechanics and surface chemistry studies were carried out to develop further understanding of the influence of water vapor on fatigue crack growth in aluminum alloys. The room temperature fatigue crack growth response was determined for 2219-T851 aluminum alloy exposed to water vapor at pressures from 1 to 30 Pa over a range of stress intensity factors (K). Data were also obtained in vacuum (at < 0.50 μPa), and dehumidified argon. The test results showed that, at a frequency of 5 Hz, the rate of crack growth is essentially unaffected by water vapor until a threshold pressure is reached. Above this threshold, the rates increased, reaching a maximum within one order of magnitude increase in vapor pressure. This maximum crack growth rate is equal to that obtained in air (40 to 60 pct relative humidity), distilled water and 3.5 pct NaCl solution on the same material. Parallel studies of the reactions of water vapor with fresh alloy surfaces (produced either byin situ impact fracture or by ion etching) were made by Auger electron spectroscopy (AES) and X-ray photoelectron spectroscopy (XPS). The extent of surface reaction was monitored by changes in the oxygen AES and XPS signals. Correlation between the fatigue crack growth response and the surface reaction kinetics has been made, and is consistent with a transport-limited model for crack growth. The results also suggest that enhancement of fatigue crack growth by water vapor in the aluminum alloys occurs through a “hydrogen embrittle ment” mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. P. Wei:J. Eng. Fract. Mech., 1970, vol. 1, p. 633.

    Article  CAS  Google Scholar 

  2. A. J. McEvily and R. P. Wei:Corrosion Fatigue, O. Devereux, A. J. McEvily and R. W. Staehle, eds., p. 381, NACE, Houston, TX, 1972.

    Google Scholar 

  3. Corrosion Fatigue, O. Devereux, A. J. McEvily, and R. W. Staehle, eds., NACE, Houston, TX, 1972.

    Google Scholar 

  4. ASTM STP 415,Fatigue Crack Propagation, ASTM., Philadelphia, PA, 1967.

  5. R. P. Wei and M. O. Speidel:Corrosion Fatigue, O. Devereux, A. J. McEvily and R. W. Staehle, eds., p. 379, NACE, Houston, TX, 1972.

    Google Scholar 

  6. F. J. Bradshaw and C. Wheeler:Int. J. Fract. Mech., 1969, vol. 5, pp. 255–68.

    Google Scholar 

  7. A. Hartman, F. J. Jacobs, A. Nederveen, and R. DeRijk: NLR Tech. Note no. M 2181, National Aerospace Laboratory, Amsterdam, The Netherlands, 1967.

    Google Scholar 

  8. R. P. Wei:Int J. Fract. Mech., 1968, vol. 4, p. 159.

    Google Scholar 

  9. S. J. Hudak and R. P. Wei:Corrosion Fatigue, O. Devereux, A. J. McEvily and R. W. Staehle, eds., p. 433, NACE, Houston, TX, 1972.

    Google Scholar 

  10. R. P. Wei and J. D. Landes:Mater. Res. Stand., 1969, vol. 9, p. 25.

    Google Scholar 

  11. J. M. Barsom:Corrosion Fatigue, O. Devereux, A. J. McEvily and R. W. Staehle, eds., p. 424, NACE, Houston, TX, 1972.

    Google Scholar 

  12. J. P. Gallagher and R. P. Wei:Corrosion Fatigue, O. Devereux, A. J. McEvily and R. W. Staehle, eds., p. 409, NACE, Houston, TX, 1972.

    Google Scholar 

  13. G. A. Miller, S. J. Hudak, and R. P. Wei:J. Test Eval., 1973, vol. l, p. 524.

    Google Scholar 

  14. J. P. Hutin: M.S. Thesis, Lehigh University, Bethlehem, PA, 1975.

    Google Scholar 

  15. D. J. Dwyer, G. W. Simmons, and R. P. Wei:Surf. Sci., 1977, vol. 64, pp. 617–32.

    Article  CAS  Google Scholar 

  16. G. W. Simmons, P. S. Pao, and R. P. Wei:Met. Trans. A, 1978, vol. 9A, pp. 1147–58.

    Article  CAS  Google Scholar 

  17. P. S. Pao, W. Wei, and R. P. Wei:Environment-Sensitive Fracture of Engineering Materials, Z. A. Foroulis, ed., pp. 565–80, TMS-AIME, 1979.

  18. T. W. Weir, R. G. Hart, G. W. Simmons, and R. P. Wei: unpublished research, Lehigh University, Bethlehem, PA, 1979.

  19. W. K. Wilson: Report No. WERL-0029-3, Westinghouse Research Laboratories, Pittsburgh, PA, 1966.

    Google Scholar 

  20. W. K. Wilson: Report No. 66-1B4-BTLFR-R1, Westinghouse Research Laboratories, Pittsburgh, PA, 1966.

    Google Scholar 

  21. R. P. Gangloff and R. P. Wei: ASTM, STP 645, B. M. Strauss and W. H. Cullen, Jr., eds., pp. 87–106, ASTM, Philadelphia, PA, 1978.

    Google Scholar 

  22. H. H. Johnson:Mater. Res. Stand., 1966, vol. 6, p. 422.

    Google Scholar 

  23. Che-Yu Li and R. P. Wei:Mater. Res. Stand., 1966, vol. 6, p. 392.

    Google Scholar 

  24. R. P. Wei, N. E. Fenelli, K. D. Unangst, and T. T. Shih: AFOSR Final Report No. IFSM-78-88, Lehigh University, Bethlehem, PA, January 1978.

    Google Scholar 

  25. R. G. Hart, G. W. Simmons, and R. P. Wei: unpublished research, Lehigh University, Bethlehem, PA, 1979.

  26. W. G. Clark, Jr. and S. J. Hudak, Jr.:J. Test. Eval., 1975, vol. 3, pp. 454–76.

    CAS  Google Scholar 

  27. R. P. Wei, W. Wei, and G. A. Miller:J. Test. Eval., 1979, vol. 7, pp. 90–95.

    Article  Google Scholar 

  28. S. Dushman:Scientific Foundations of Vacuum Technique, 2nd ed., J. M. Lafferty, ed., p. 88, Wiley, 1962.

  29. R. P. Wei:Fatigue Mechanisms, Proceedings of an ASTM-NBS-NSF symposium, J. T. Fong, ed., ASTM, STP 675, pp. 816–40, ASTM, Philadelphia, PA, 1979.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wei, R.P., Pao, P.S., Hart, R.G. et al. Fracture mechanics and surface chemistry studies of fatigue crack growth in an aluminum alloy. Metall Trans A 11, 151–158 (1980). https://doi.org/10.1007/BF02700451

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02700451

Keywords

Navigation