Skip to main content
Log in

Protoporphyrin IX-induced structural and functional changes in human red blood cells, haemoglobin and myoglobin

  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

Protoporphyrin IX and its derivatives are used as photosensitizers in the photodynamic therapy of cancer. Protoporphyrin IX penetrates into human red blood cells and releases oxygen from them. This leads to a change in the morphology of the cells. Spectrophotometric studies reveal that protoporphyrin IX interacts with haemoglobin and myoglobin forming ground state complexes. For both proteins, the binding affinity constant decreases, while the possible number of binding sites increases, as the aggregation state of the porphyrin is increased. The interactions lead to conformational changes of both haemoglobin and myoglobin as observed in circular dichroism studies. Upon binding with the proteins, protoporphyrin IX releases the heme-bound oxygen from the oxyproteins, which is dependent on the stoichiometric ratios of the porphyrin: protein. The peroxidase activities of haemoglobin and myoglobin are potentiated by the protein-porphyrin complexation. Possible mechanisms underlying the relation between the porphyrin-induced structural modifications of the heme proteins and alterations in their functional properties have been discussed. The findings may have a role in establishing efficacy of therapeutic uses of porphyrins as well as in elucidating their mechanisms of action as therapeutic agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

cd:

Circular dichroism

EPP:

erythropoietic protoporphyria

Hb:

haemoglobin

HRP:

horseradish peroxidase

Mb:

oxymyoglobin

PDT:

photodynamic therapy

PP:

protoporphyrin

RBC:

red blood cells

ZPP:

zinc protoporphyrin

References

  • Afonso S G, de Salamanca R E and Batle A 1997 Folding and unfolding of delta-aminolevulinic acid dehydratase and porphobilinogen deaminase induced by uro and protoporphyrin;Int. J. Biochem. Cell Biol. 29 493–503

    Article  PubMed  CAS  Google Scholar 

  • Ahmed N, Feyes D K, Agarwal R and Mukhtar H 1998 Photodynamic therapy results in induction of WAF1/CIP1/p21 leading to cell cycle arrest and apoptosis;Proc. Natl. Acad. Sci. USA 95 6977–6982

    Article  Google Scholar 

  • Balagopalkrishna C, Abugo O O, Horsky J, Manoharan P T, Nagababu E and Rifkind J M 1998 Superoxide produced in the heme pocket of the chain of hemoglobin reacts with the Β93 cysteine to produce a thiol redical;Biochemistry 37 13194–13199

    Article  Google Scholar 

  • Beaton S, McPherson R A and Tilley L 1995 Alterations in erythrocyte band 3 organisation induced by the photosensitizer, hematoporphyrin derivative;Photochem. Photobiol. 62 353–355

    PubMed  CAS  Google Scholar 

  • Bhattacharyya J, Bhattacharyya M, Chakraborti A S, Chaudhuri U, Poddar R K 1996 TFZ is more potent in releasing oxygen from hemoglobin and myoglobin as compared to CPZ;J. Pharm. Pharmacol. 48 965–967

    Google Scholar 

  • Bhattacharyya M, Chaudhuri U and Poddar R K 1990 Studies on the interaction of chlorpromazine with hemoglobin;Int. J. Biol. Macromol. 12 297–301

    Article  PubMed  CAS  Google Scholar 

  • Bolodon V N, Krut’ko Iu V, Rozin V V and Chernitskii E A 1996 Effect of erythrocyte membrane structure on the dose dependence of photohemolysis;Biofizika 41 413–416

    Google Scholar 

  • Chakraborti A S 2003 Interaction of porphyrins with heme proteins — a brief review;Mol. Cell. Biochem. 253 49–54

    Article  PubMed  CAS  Google Scholar 

  • Chen Y H, Yang J T and Martinez H M 1972 Determination of secondary structure of proteins by circular dichroism and optical rotatory dispersion;Biochemistry 11 4120–4131

    Article  PubMed  CAS  Google Scholar 

  • Dadosh N and Shaklai N 1988 Impaired of red cell membrane cytoskeleton by protoporphyrin IX: light and dark effects;Photochem. Photobiol. 47 689–697

    PubMed  CAS  Google Scholar 

  • Dixon H and McIntosh R 1967 Reduction of methemoglobin samples using gel filtration for continuous removal of reaction products;Nature (London) 71 356–360

    Google Scholar 

  • Dougherty T J, Gomer C J, Henderson B W, Jori J, Kessel D, Korbelic M, Moan J and Peng Q 1998 Photodynamic therapy;J. Natl. Cancer Inst. 90 889–905

    Article  PubMed  CAS  Google Scholar 

  • Everse J, Johnson M C and Marini M A 1994 Peroxidase activities of hemoglobin and hemoglobin derivatives;Methods Enzymol. 231 547–561

    PubMed  CAS  Google Scholar 

  • Falk J E 1964Porphyrins and metalloporphyrins (Amsterdam: Elsevier) p. 236

    Google Scholar 

  • Fisher A M, Murphree A L and Gomer C J 1995 Clinical and preclinical photodynamic therapy;Laser Surg. Med. 17 2–31

    Article  CAS  Google Scholar 

  • Fridovich I 1986 Biological effects of the superoxide radical;Arch. Biochem. Biophys. 247 1–11

    Article  PubMed  CAS  Google Scholar 

  • Geraci G and Parkhurst L J 1981 Circular dichroism spectra of hemoglobins;Methods Enzymol. 76 262–275

    PubMed  CAS  Google Scholar 

  • Giardina B, Messana I, Scatena R and Castagnola M 1995 The multiple functions of hemoglobin;Crit. Rev. Biochem. Mol. Biol. 30 165–196

    PubMed  CAS  Google Scholar 

  • He X Y, Sikes R A, Thomsen S, Chung L W and Jacques S L 1994 Photodynamic therapy with photofrin II induces programmed cell death in carcinoma cell lines;Photochem. Photobiol. 59 468–473

    PubMed  CAS  Google Scholar 

  • Hirsch R E, Lin M J and Park C M 1989 Interaction of zinc protoporphyrin with intact oxyhemoglobin;Biochemistry 28 1851–1855

    Article  PubMed  CAS  Google Scholar 

  • Hirsch R E, Lin M J, Pulakhandam U P, Nagel R L and Sandberg S 1993 Hemoglobin oxygen affinity is increased in erythropoietic protoporphyria;Photochem. Photobiol. 57 885–888

    PubMed  CAS  Google Scholar 

  • Huang T H and Redfield A G 1976 NMR study of relative oxygen binding to the alpha and beta subunits of human adult hemoglobin;J. Biol. Chem. 251 7114–7119

    PubMed  CAS  Google Scholar 

  • Jain V 1992 Mechanisms and metabolic modulation of photosensitization; inSelected topics in photobiology (eds) V Jain and H Goel (New Delhi: Indian Photobiological Society) pp 130–147

    Google Scholar 

  • Joussen A M, Kruse F E, Kaus M and Volcker H E 1997 Endogenous porphyrin for photodynamic therapy of cataractsin vitro;Ophthalmologe 94 428–435

    Article  PubMed  CAS  Google Scholar 

  • Kapp E A, Daya S and Whitley C G 1990 Protein-ligand interactions: Interaction of nitrosamines with nicotinic acetylcholine receptor;Biochem. Biophys. Res. Commun. 167 1383–1392

    Article  PubMed  CAS  Google Scholar 

  • Kessel D 1986 Porphyrin-lipoproten association as a factor in porphyrin localization;Cancer Lett. 33 183–188

    Article  PubMed  CAS  Google Scholar 

  • Lamola A A, Piomelli S, Poh-Fitzpatric M B, Yamane T and Harbor L C 1975 Erythropoietic protoporphyria and lead intoxication: the molecular basis for difference in cutaneous photosensitivity. II. Different binding of erythrocyte protoporphyrin to hemoglobin;J. Clin. Invest. 56 1528–1535

    PubMed  CAS  Google Scholar 

  • Lamon J M, Poh-Fitzpatric M B and Lamola A A 1990 Hepatic protoporphyrin production in human protoporphyria. Effects of intravenous hematin and analysis of erythrocyte protoporphyrin distribution;Gastroenterology 79 115–125

    Google Scholar 

  • Lilge L and Wilson B C 1998 Photodynamic therapy of intracranial tissues: A preclinical comparative study of four different photosensitizers;J. Clin. Laser Med. Surg. 16 81–91

    PubMed  CAS  Google Scholar 

  • Margalit R, Shaklai N and Cohen S 1983 Fluorimetric study in the dimerization equilibrium of protoporphyrin IX and its hematoderivative;Biochem. J. 209 547–552

    PubMed  CAS  Google Scholar 

  • Nauta J M, Speelman O C, van Leengoed H L, Nikkels P G, Roodenburg J L, Star W M, Witjes M J and Vermey A J 1997In vivo photo-detection of chemically induced premalignancy lesions and squamous cell carcinoma of the rat palatal mucosa;Photochem. Photobiol. B: Biol. 39 156–166

    Article  CAS  Google Scholar 

  • Nseyo U O, Dettaven J, Dougherty T J, Potter W R, Merrill D L, Lundahl S I and Lamm D L 1998 Photodynamic therapy (PDT) in the treatment of patients with resistant superficial bladder cancer. A long term experience;J. Clin. Laser Med. Surg. 16 61–68

    PubMed  CAS  Google Scholar 

  • Patel R P, Svistunenko D A, Darley-Usmer V M, Symons M C and Wilson M T 1996 Redox cycling of human methemoglobin by H2O2 yields persistent ferryl iron and protein based radicals;Free Radic. Res. 25 117–123

    Google Scholar 

  • Peng Q, Warloe T, Berg K, Moan J, Kongshaug M, Giereksky K E and Nesland J M 1997 5-aminolevulinic acid-based photodynamic therapy. Clinical research and future challenges;Cancer 79 2282–2308

    Article  PubMed  CAS  Google Scholar 

  • Reynolds T 1997 Photodynamic therapy expands its horizons;J. Natl. Cancer Inst. 89 112–114

    Article  PubMed  CAS  Google Scholar 

  • Ricchelli F, Gobbo S, Jori G, Salet C and Moreno G 1995 Temperature-induced changes in fluorescence properties as a probe of microenvironment in lipid membranes. 2. The partition of hematoporphyrin and protoporphyrin in mitochondria;Eur. J. Biochem. 233 165–170

    Article  PubMed  CAS  Google Scholar 

  • Rotenberg M, Cohen S and Margalit R 1987 Thermodynamics of porphyrin binding to serum albumin: effects of temperature of porphyrin species and of albumin-carried fatty acid;Photochem. Photobiol. 46 689–693

    PubMed  CAS  Google Scholar 

  • Sil S and Chakraborti A S 1996 Studies on the interaction of protporphyrin with hemoglobin and myoglobin;Indian J. Biochem. Biophys. 33 285–291

    Google Scholar 

  • Sil S and Chakraborti A S 1997 Protoporphyrin IX potentiates horseradish peroxidase-catalysed oxidation of NADH: involvement of enzyme-porphyrin interaction;Biochem. Mol. Biol. Int. 42 759–768

    CAS  Google Scholar 

  • Sil S and Chakraborti A S 2002 Hematoporphyrin interacts with myogobin and alters its functions;Mol. Cell. Biochem. 237 103–110

    Article  PubMed  CAS  Google Scholar 

  • Sil S, Kar M and Chakraborti A S 1997 Studies on the interaction of hematoporphyrin with hemoglobin;J. Photochem. Photobiol. B: Biol. 41 67–72

    Article  Google Scholar 

  • Sil S, Kar M and Chakraborti A S 2000 Hematoporphyrin enhances the peroxidase activity of hemoglobin;J. Porphyrins Phthalocyanines 4 168–174

    Article  CAS  Google Scholar 

  • Smith G J and Ghiggino K P 1993 The photophysics of hematoporphyrin dimers of aggregates in aqueous solution;J. Photochem. Photobiol. B: Biol. 19 49–54

    Article  CAS  Google Scholar 

  • Smith M H and Gibson Q H 1959 The preparation and some properties of myoglobin containing meso- and deutero-haem;Biochem. J. 73 101–106

    PubMed  CAS  Google Scholar 

  • Stables G I and Ash D V 1995 Photodynamic therapy;Cancer Treatment Rev. 21 311–323

    Article  CAS  Google Scholar 

  • Stryer L1995Biochemistry (New York: W H Freeman) pp 147–178

    Google Scholar 

  • Takayama K and Nakano M 1977 Mechanism of thyroxin-mediated oxidation of reduced nicotinamide adenine dinucleotide in peroxidase-H2O2 system;Biochemistry 16 1921–1926

    Article  Google Scholar 

  • Timmins G S and Davies M J 1994 Conformational changes induced in bovine serum albumin by the photodynamic action of hematoporphyrin;Photochem. Photobiol. B: Biol. 24 117–122

    Article  CAS  Google Scholar 

  • van Steveninck J, Boegheim J P, Dubbelman T M and van der Zee J 1987 The mechanism of potentiation of horseradish peroxidase-catalysed oxidation of NADPH by porphyrins;Biochem. J. 242 611–613

    PubMed  Google Scholar 

  • van Steveninck J, Boegheim J P, Dubbelman T M and van der Zee J 1988 The influence of porphyrins on iron-catalysed generation of hydroxyl radicals;Biochem. J. 250 197–201

    PubMed  Google Scholar 

  • West J B 1985 Uptake and delivery of the respiratory gases; inBest and Taylor’s physiological basis of medical practices (London: Williams and Wilkins) pp 546–571

    Google Scholar 

  • Witenberg J B and Witenberg B A 1981 Preparation of myoglobin;Methods Enzymol 76 29–42

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhay Sankar Chakraborti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sil, S., Bose, T., Roy, D. et al. Protoporphyrin IX-induced structural and functional changes in human red blood cells, haemoglobin and myoglobin. J Biosci 29, 281–291 (2004). https://doi.org/10.1007/BF02702610

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02702610

Keywords

Navigation