Skip to main content
Log in

Will transgenic plants adversely affect the environment?

  • Review
  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

Transgenic insecticidal plants based onBacillus thuringiensis (Bt) endotoxins, on proteinase inhibitors and on lectins, and transgenic herbicide tolerant plants are widely used in modern agriculture. The results of the studies on likelihood and non-likelihood of adverse effects of transgenic plants on the environment including: (i) effects on nontarget species; (ii) invasiveness; (iii) potential for transgenes to ‘escape’ into the environment by horizontal gene transfer; and (iv) adverse effects on soil biota are reviewed. In general, it seems that large-scale implementation of transgenic insecticidal and herbicide tolerant plants do not display considerable negative effects on the environments and, moreover, at least some transgenic plants can improve the corresponding environments and human health because their production considerably reduces the load of chemical insecticides and herbicides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AFLP:

Amplified fragment length polymorphism

AM:

arbuscular mycorrhizal

BBPs:

biotin-binding proteins

Bt:

Bacillus thuringiensis

CEWc:

chicken egg white cystatin

CFU:

colony forming unit

CPB:

Colorado potato beetle

CpTi:

cowpea trypsin inhibitor

ECB:

European corn borer

GFP:

green fluorescent protein

GNA:

Galanthus nivalis agglutinin

GPA:

green peach aphid

HT:

herbicide tolerant

MIT-2:

mustard trypsin inhibitor-2

PCN:

potato cyst hematodes

PCR:

polymerase chain reaction

PIs:

protease inhibitors

PLFA:

phospholipid fatty acid analysis

rNPT-II:

cloned neomycin phosphotransferase-II

SBTI:

soybean trypsin inhibitor

SSCP:

single-strand conformation polymorphism

TPs:

transgenic plants

Refereneces

  • Al-Deeb M A, Wilde G E, Blair J M and Todd T C 2003 Effect of Bt corn for corn rootworm control on nontarget soil microarthropods and nematodes;Environ. Entomol. 32 859–865

    Article  Google Scholar 

  • Asao H, Arai S and Nishizawa Y 2003 Environmental risk evaluation of transgenic strawberry expressing a rice chitinase gene;Seibutsu Kogaku Kaishi 81 57–63

    CAS  Google Scholar 

  • Astrid T, Groot A T and Dicke M 2002 Insect-resistant transgenic plants in a multi-trophic context;Plant J. 31 387–406

    Article  Google Scholar 

  • Baucom R S and Mauricio R 2004 Fitness costs and benefits of novel herbicide tolerance in a noxious weed;Proc. Natl. Acad. Sci. USA 101 13386–13390

    Article  CAS  PubMed  Google Scholar 

  • Baur M E and Boethel D J 2003 Effect of Bt cotton expressing Cry1A(c) on the survival and fecundity of two hymenopteran parasitoids (Braconidae, Encyrtidae) in the laboratory;Biol. Control 26 325–332

    Article  CAS  Google Scholar 

  • Beckie H J Warwick S I Nair H and Sequin-Swartz G 2003 Gene flow in commercial fields of herbicide-resistant oilseed rape (Brassica napus);Ecol. Appl. 13 1276–1294

    Article  Google Scholar 

  • Bell H A, Down R E, Fitches E C, Edwards J P and Gatehouse AMR 2003 Impact of genetically modified potato expressing plant-derived insect resistance genes on the predatory bugPodisus maculiventris (Heteroptera: Pentatomidae);Biocontrol Sci. Technol. 13 729–741

    Article  Google Scholar 

  • Bell H A, Fitches E C, Marris G C, Bell J, Edwards J P, Gatehouse J A and Gatehouse AMR 2001 Transgenic GNA expressing potato plants augment the beneficial biocontrol ofLacanobia oleracea (Lepidoptera; Noctuidae) by the parasitoidEulophus pennicornis (Hymenoptera; Eulophidae);Transgenic Res. 10 35–42

    Article  CAS  PubMed  Google Scholar 

  • Bergelson J, Purrington C B, Palm C J and LopezGutierrez J C 1996 Costs of resistance: A test using transgenicArabidopsis thaliana;Proc. R. Soc. London Ser. B. 263 1659–1663

    Article  CAS  Google Scholar 

  • Bernal C C, Aguda R M and Cohen M B 2002 Effect of rice lines transformed withBacillus thuringiensis toxin genes on the brown planthopper and its predatorCyrtorhinus lividipennis;Entomol. Exp. Appl. 102 21–28

    Article  Google Scholar 

  • Bernal J S, Griset J G and Gillogly P O 2002 Impacts of developing on Bt maize-intoxicated hosts on fitness parameters of a stem borer parasitoid;J. Entomol. Sci. 37 27–40

    Article  Google Scholar 

  • Birch ANE, Geoghegan I E, Majerus MEN, McNicol J W, Hackett C A, Gatehouse A M R and Gatehouse J A 1999 Tri-trophic interactions involving pest aphids, predatory 2-spot ladybirds and transgenic potatoes expressing snowdrop lectin for aphid resistance;Mol. Breed 5 75–83

    Article  Google Scholar 

  • Bitzer R J, Buckelew L D and Pedigo L P 2002 Effects of transgenic herbicide-resistant soybean varieties and systems on surface-active springtails (Entognatha: collembola);Environ. Entomol. 31 449–461

    Article  Google Scholar 

  • Borisjuk N V, Borisjuk L G, Logendra S, Petersen F, Gleba Y and Raskin I 1999 Production of recombinant proteins in plant root exudates;Nat. Biotechnol. 17 466–469

    Article  CAS  PubMed  Google Scholar 

  • Bouchard E, Cloutier C and Michaud D 2003a Oryzacystatin I expressed in transgenic potato induces digestive compensation in an insect natural predator via its herbivorous prey feeding on the plant;Mol. Ecol. 12 2439–2446

    Article  CAS  PubMed  Google Scholar 

  • Bouchard E, Michaud D and Cloutier C 2003b Molecular interactions between an insect predator and its herbivore prey on transgenic potato expressing a cysteineproteinase inhibitor from rice;Mol. Ecol. 12 2429–2437

    Article  CAS  PubMed  Google Scholar 

  • Brodsgaard H F, Brodsgaard C J, Hansen H and Lovei G L 2003 Environmental risk assessment of transgene products using honey bee (Apis mellifera) larvae;Apidologie 34 139–145

    Article  Google Scholar 

  • Bruinsma M, Kowalchuk G A and van Veen J A 2003 Effects of genetically modified plants on microbial communities and processes in soil;Biol. Fertil. Soils 37 329–337

    Google Scholar 

  • Brusetti L, Fracia P, Bertolini C, Pagliuca A S Bet al 2004 Bacterial communities associated with the rhizosphere of transgenic Bt 176 maize (Zea mays) and its non-transgenic counterpart;Plant Soil 218 137–144

    Google Scholar 

  • Buckelew L D, Pedigo L P, Mero H M, Owen M D K and Tylka G L 2000 Effects of weed management systems on canopy insects in herbicide-resistant soybeans;J. Econ. Entomol. 93 1437–1443

    Article  CAS  PubMed  Google Scholar 

  • Burgess E P J, Lovei G L, Malone L A, Nielsen I W, Gatehouse H S and Christeller J T 2002 Prey-mediated effects of the protease inhibitor aprotinin on the predatory carabid beetleNebria brevicollis;J. Insect Physiol. 48 1093–1101

    Article  CAS  PubMed  Google Scholar 

  • Burgess E P J, Malone L A and Christeller J T 1996 Effects of two proteinase inhibitors on the digestive enzymes and survival of honey bees (Apis mellifera);J. Insect Physiol. 42 823–828

    Article  CAS  Google Scholar 

  • Burgess E P J, Malone L A, Christeller J T, Lester M T, Murray Cet al 2002 Avidin expressed in transgenic tobacco leaves confers resistance to two noctuid pests,Helicoverpa armigera andSpodoptera litura;Transgenic Res. 11 185–198

    Article  CAS  PubMed  Google Scholar 

  • Burke J M, Gardner K A and Reisenberg L H 2002 The potential for gene flow between cultivated and wild sunflower (Helianthus annuus) in the United Sates American;J. Bot. 89 1550–1552

    Article  Google Scholar 

  • Burke J M and Rieseberg L H 2003 Fitness Effects of Transgenic Disease Resistance in Sunflowers;Science 300 1250–1253

    Article  CAS  PubMed  Google Scholar 

  • Cao J, Ibrahim H, Garcia J J, Mason H, Granados R R and Earle E D 2002 Transgenic tobacco plants carrying a baculovirus enhancing gene slow the development and increase the mortality ofTrichoplusia ni larvae;Plant Cell Reprod. 21 244–250

    Article  CAS  Google Scholar 

  • Carpenter J and Gianessi L 2000 Herbicide use on Roundup Ready crops;Science 287 803–804

    Article  CAS  PubMed  Google Scholar 

  • Celis C, Scurrah M, Cowgill S, Chumbiauca S, Green J, Franco J, Main G, Kiezebrink D, Visser R G and Atkinson H J 2004 Environmental biosafety and transgenic potato in a centre of diversity for this crop;Nature (London) 432 222–225

    Article  CAS  Google Scholar 

  • Chilcutt C F and Tabashnik B E 2004 Contamination of refuges byBacillus thuringiensis toxin genes from transgenic maize;Proc. Natl. Acad. Sci. USA 101 7526–7529

    Article  CAS  PubMed  Google Scholar 

  • Colbach N, Clermont-Dauphin C and Meynard J M 2001 GENESYS: a model of the influence of cropping system on gene escape from herbicide tolerant rapeseed crops to rape volunteers-I. Temporal evolution of a population of rapeseed volunteers in a field;Agric. Ecosyst. Environ. 83 235–253

    Article  Google Scholar 

  • Conko G 2003 Safety, risk and the precautionary principle: rethinking precautionary approaches to the regulation of transgenicplants;Transgenic Res. 12 639–647

    Article  CAS  PubMed  Google Scholar 

  • Couty A, de la Vina G, Clark S J, Kaiser L, Pham-Delegue M H and Poppy G M 2001a Direct and indirect sublethal effects ofGalanthus nivalis agglutinin (GNA) on the development of a potato-aphid parasitoid,Aphelinus abdominalis (Hymenoptera: Aphelinidae);J. Insect Physiol. 47 553–561

    Article  CAS  PubMed  Google Scholar 

  • Couty A Down R E Gatehouse AMR Kaiser L, Pham-Del’egue M H and Poppy G M 2001b Effects of artificial diet containing GNA and GNA-expressing potatoes on the development of the aphid parasitoidAphidius end Haliday (Hymenoptera: Aphidiidae);J. Insect Physiol. 47 1357–1366

    Article  CAS  PubMed  Google Scholar 

  • Cowgill S E and Atkinson H J 2003 A sequential approach to risk assessment of transgenic plants expressing protease inhibitors: effects on non target herbivorous insects;Transgenic Res. 12 439–449

    Article  CAS  PubMed  Google Scholar 

  • Cowgill S E, Bardgett R D, Kiezebrink D T and Atkinson H J 2002a The effect of transgenic nematode resistance on nontarget organisms in the potato rhizosphere;J. Appl. Ecol. 39 915–923

    Article  Google Scholar 

  • Cowgill S E, Wright C and Atkinson H J 2002b Transgenic potatoes with enhanced levels of nematode resistance do not have altered susceptibility to nontarget aphids;Mol. Ecol. 11 821–827

    Article  CAS  PubMed  Google Scholar 

  • Crecchio C and Stotzky G 1998 Insecticidal activity and biodegradation of the toxin fromBacillus thuringiensis subsp. kurstaki bound to humic acids from soil;Soil Biol. Biochem. 30 463–470

    Article  CAS  Google Scholar 

  • Crecchio C and Stotzky G 2001 Biodegradation and insecticidal activity of the toxin fromBacillus thuringiensis subsp. kurstaki bound on complexes of montmorillonite-humic acids-Al hydroxypolymers;Soil Biol. Biochem. 33 573–581

    Article  CAS  Google Scholar 

  • Daniell H, Muthukumar B and Lee S B 2001 Marker tree transgenic plants: engineering the chloroplast genome without the use of antibiotic selection;Curr. Genet. 39 109–116

    Article  CAS  PubMed  Google Scholar 

  • de Vries J, Heine M, Harms, K and Wackernagel W 2003 Spread of Recombinant DNA by Roots and Pollen of Transgenic Potato Plants, Identified by Highly Specific Biomonitoring Using Natural Transformation of anAcinetobacter sp.;Appl. Environ. Microbiol. 69 4455–4462

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dinel H, Schnitzer M, Saharinen M, Meloche F, Par’e Tet al 2003 Extractable soil lipids and microbial activity as affected by Bt and non-Bt maize grown on a silty clay loam soil;J. Environ. Sci. Health B38 211–219

    Article  CAS  Google Scholar 

  • Donegan K K, Palm C J, Fieland V J, Porteous L A, Ganio L Met al 1995 Changes in levels, species and DNA fingerprints of soil microorganisms associated with cotton expressing theBacillus thuringiensis var.kurstaki endotoxin;Appl. Soil Ecol. 2 111–124

    Article  Google Scholar 

  • Donegan K K, Schaller D L, Stone J K, Ganio L M, Reed Get al 1996 Microbial populations, fungal species diversity and plant pathogen levels in field plots of potatoes expressing theBacillus thuringiensis var.tenebrionis endotoxin;Transgenic Res. 5 25–35

    Article  CAS  Google Scholar 

  • Donegan K K, Seidler R J, Fieland V J, Schaller D L, Palm C Jet al 1997 Decomposition of genetically engineered tobacco under field conditions: persistence of the proteinase inhibitor I product and effects on soil microbial respiration and protozoa, nematode and arthropod populations;J. Appl. Ecol. 4 767–777

    Article  Google Scholar 

  • Donegan K K, Seidler R J, Doyle J D, Porteous L A, Digiovanni G, Widmer F and Watrud L S 1999 A field study with genetically engineered alfalfa inoculated with recombinantSinorhizobium meliloti: effects on the soil ecosystem;J. Appl. Ecol. 36 920–936

    Article  Google Scholar 

  • Down R E, Ford L, Woodhouse S D, Davison G M, Majerus M E, Gatehouse J A and Gatehouse A M 2003 Tritrophic interactions between transgenic potato expressing snowdrop lectin (GNA), an aphid pest (peach-potato aphid;Myzus persicae (Sulz.) and a beneficial predator (2-spot ladybird;Adalia bipunctata L.);Transgenic Res. 12 229–241

    Article  CAS  PubMed  Google Scholar 

  • Duan J J, Head G, McKee M J, Nickson T E, Martin J W and Sayegh F S 2002 Evaluation of dietary effects of transgenic corn pollen expressing Cry3Bb1 protein on a non-target ladybird beetle,Coleomegilla maculata;Entomol. Exp. Appl. 104 271–280

    Article  CAS  Google Scholar 

  • Dunfield K E and Germida J J 2003 Seasonal Changes in the Rhizosphere Microbial Communities Associated with Field-Grown Genetically Modified Canola (Brassica napus);Appl. Environ. Microbiol. 69 7310–7318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dunfield K E and Germida J J 2004 Impact of genetically modified crops on soil- and plant-associated microbial communities;J. Environ. Qual. 33 806–815

    Article  CAS  PubMed  Google Scholar 

  • Dutton A, Klein H, Romeis J and Bigler F 2002 Uptake of Bttoxin by herbivores feeding on transgenic maize and consequences for the predatorChrysoperla carnea;Ecol. Entomol. 27 441–447

    Article  Google Scholar 

  • Dutton A, Klein H, Romeis J and Bigler F 2003a Prey-mediated effects ofBacillusthuringiensis spray on the predatorChrysoperla carnea in maize;Biol. Control 26 209–215

    Article  Google Scholar 

  • Dutton A, Romeis J and Bigler F 2003b Assessing the risks of insect resistant transgenic plants on entomophagous arthropods: Bt-maize expressing Cry1Ab as a case study;BioControl 48 611–636

    Article  CAS  Google Scholar 

  • Escher N, Kach B and Nentwig W 2000 Decomposition of transgenicBacillus thuringiensis maize by microorganisms and woodlicePorcellio scaber (Crustacea: Isopoda);Basic Appl. Ecol. 1 161–169

    Article  Google Scholar 

  • Ferry N, Jouanin L, Ceci L R, Mulligan E A, Emami K, Gatehouse J A and Gatehouse A M 2005 Impact of oilseed rape expressing the insecticidal serine protease inhibitor, mustard trypsin inhibitor-2 on the beneficial predatorPterostichus madidus;Mol. Ecol. 14 337–349

    Article  CAS  PubMed  Google Scholar 

  • Giovannetti M 2003 The ecological risks of transgenic plants;Riv. Biol. 96 207–223

    PubMed  Google Scholar 

  • Glandorf D C M, Bakker P and VanLoon L C 1997 Influence of the production of antibacterial and antifungal proteins by transgenic plants on the saprophytic soil microflora;Acta Bot. Neerl. 46 85–104

    Article  CAS  Google Scholar 

  • Godfree R C, Woods A G, Burdon J J and Higgins T J V 2004 Growth, fecundity and competitive ability of transgenicTrifolium subterraneum subsp. subterraneum cv. Leura expressing a sunflower seed albumin gene;Hereditas 141 1–16

    Google Scholar 

  • Graham J, Gordon S C, Smith K, McNicol R J and McNicol J W 2002 The effect of the Cowpea trypspin inhibitor in strawberry on damage by vine weevil under field conditions;J. Hortic. Sci. Biotechnol. 77 33–40

    Article  CAS  Google Scholar 

  • Griffiths B S, Geoghegan I E and Robertson W M 2000 Testing genetically engineered potato, producing the lectins GNA and Con A, on non-target soil organisms and processes;J. Appl. Ecol. 37 159–170

    Article  Google Scholar 

  • Halfhill M D, Millwood R J, Weissinger A K, Warwick S I and Stewart C N 2003 Additive transgene expression and genetic introgression in multiple green-fluorescent protein transgenic crop x weed hybrid generations;Theor. Appl. Genet. 107 1533–1540

    Article  CAS  PubMed  Google Scholar 

  • Halfhill M D, Zhu B, Warwick S I, Raymers P L, Millwood R J, Weissinger A K and Stewart C N Jr 2004 Hybridization and backcrossing between transgenic oilseed rape and two related weed species under field conditions;Environ. Biosafety Res. 3 73–81

    Article  PubMed  Google Scholar 

  • Haygood R, Ives A R and Andow D A 2004 Transgene containment, transgene escape, transgenic crops, wild relatives;Ecol. Lett. 7 213–220

    Article  Google Scholar 

  • Head G, Surber J B, Watson J A, Martin J W and Duan J J 2002 No detection of Cry1Ac protein in soil after multiple years of transgenic Bt cotton (Bollgard) use;Environ. Entomol. 31 30–36

    Article  CAS  Google Scholar 

  • Hilbeck A 2001 Implications of transgenic, insecticidal plants for insect and plant biodiversity;Perspect. Plant. Ecol. Evol. Syst. 4 43–61

    Article  Google Scholar 

  • Hilbeck A, Baumgartner M, Fried P M and Bigler F 1998 Effects of transgenicBacillus thuringiensis corn-fed prey on mortality and development time of immatureChrysoperla carnea (Neuroptera: Chrysopidae);Environ. Entomol. 27 480–487

    Article  Google Scholar 

  • Hokanson S C, Grumet R and Hancock J F 1997 Effect of border rows and trap/donor ratios on pollen-mediated gene movement;Ecol. Appl. 7 1075–1081

    Article  Google Scholar 

  • Hopkins D W and Gregorich E G 2003 Detection and decay of the Bt endotoxin in soil from a field trial with genetically modified maize;Eur. J. Soil Sci. 54 793–800

    Article  Google Scholar 

  • Hossain F, Pray C E, Lu Y, Huang J, Fan C and Hu R 2004 Genetically modified cotton and farmers‘ health in China;Int. J. Occup. Environ. Health 10 296–303

    Article  CAS  PubMed  Google Scholar 

  • Hudson L C and Stewart C N Jr 2004 Effects of pollen-synthesized green fluorescent protein on pollen grain fitness;Sex Plant Reprod. 17 49–53

    Article  CAS  Google Scholar 

  • Jaffe G 2004 Regulating transgenic crops: a comparative analysis of different regulatory processes;Transgenic Res. 13 5–19

    Article  CAS  PubMed  Google Scholar 

  • Jasinski J R, Eisley J B, Young C E, Kovach J and Willson H 2003 Select nontarget arthropod abundance in transgenic and nontransgenic field crops in Ohio;Environ. Entomol. 32 407–413

    Article  Google Scholar 

  • Jesse L C H and Obrycki J J 2000 Field deposition of Bt transgenic corn pollen: lethal effects on the monarch butterfly;Oecologia 125 241–248

    Article  Google Scholar 

  • Jesse L C H and Obrycki J J 2002 Assessment of the non-target effects of transgenic Bt corn pollen and anthers on the milkweed tiger moth;Euchatias egle Drury (Lepidoptera: Arctiidae);J. Kans. Entomol. Soc. 75 55–58

    Google Scholar 

  • Kaplinsky N, Braun D, Lisch D, Hay A, Hake S and Freeling M 2002 Biodiversity (Communications arising): maize transgene results in Mexico are artefacts;Nature (London) 416 601–602

    Article  CAS  Google Scholar 

  • Kota M, Daniell H, Varma S, Garczynski S F, Gould F and Moar W J 1999 Overexpression of theBacillus thuringiensis (Bt) Cry2Aa2 protein in chloroplasts confers resistance to plants against susceptible and Bt-resistant insects;Proc. Natl. Acad. Sci. USA 96 1840–1845

    Article  CAS  PubMed  Google Scholar 

  • Kowalchuk G A, Bruinsma M and van Veen J A 2003 Assessing responses of soil microorganisms to GM plants;Trends Ecol. Evol. 18 403–410

    Article  Google Scholar 

  • Kramer V C, Morgan M K, Anderson A R, Hart H P, Warren G Wet al 2001 Insecticidal toxins fromPhotorhabdus luminescens and nucleic acid sequences coding there for;US Pat. No. 6281413

  • Kramer K J, Morgan T D, Throne J E, Dowell F E, Bailey M and Howard J A 2000 Transgenic avidin maize is resistant to storage insect pests;Nat. Biotechnol. 18 670–674

    Article  CAS  PubMed  Google Scholar 

  • Lavigne C, Manach H, Guyard C and Gasquez J 1995 The cost of herbicide resistance in white-chicory: Ecological implications for its commercial release;Theor. Appl. Genet. 91 1301–1308

    Article  CAS  PubMed  Google Scholar 

  • Lee L, Saxena D and Stotzky G 2003 Activity of free and claybound insecticidal proteins fromBacillus thuringiensis subsp. israelensis against the mosquitoCulex pipiens;Appl. Environ. Microbiol. 69 4111–4115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Legere A 2005 Risks and consequences of gene flow from herbicide-resistant crops: canola (Brassica napus L.) as a case study;Pest Manag. Sci. 61 292–300

    Article  CAS  PubMed  Google Scholar 

  • Liu Z C, Ye G Y and Hu C 2002 Effects of Bt transgenic rice on population dynamics of main non-target insect pests and dominant spider species in rice paddies;Acta Phytophylacica Sin. 29 138–145

    Google Scholar 

  • Lottmann J, Heuer H, Smalla K and Berg G 1999 Influence of transgenic T4-lysozyme-producing potato plants on potentially beneficial plant-associated bacteria;FEMS Microbiol. Ecol. 29 365–377

    Article  CAS  Google Scholar 

  • Lu C M, Kato M and Kakihara F 2002 Destiny of a transgene escape fromBrassica napus intoBrassica rapa;Theor. Appl. Genet. 105 78–84

    Article  CAS  PubMed  Google Scholar 

  • Malone L A, Burgess E P J, Stefanovic D and Gatehouse H S 2000 Effects of four protease inhibitors on the survival of worker bumblebees,Bombus terrestris L.;Apidologie 31 25–38

    Article  CAS  Google Scholar 

  • Malone L A, Tregidga E L, Todd J H, Burgess E P J, Philip B A, Markwick N P, Poulton J, Christeller J T, Lester M T and Gatehouse H S 2002 Effects of ingestion of a biotin-binding protein on adult and larval honey bees;Apidologie 33 447–458

    Article  CAS  Google Scholar 

  • Marvier M 2002 Improving risk assessment for non target safety of transgenic crops;Ecol. Appl. 12 1119–1124

    Article  Google Scholar 

  • Mason P, Braun L, Warwick S I, Zhu B and Stewart C N 2003 Transgenic Bt-producingBrassica napus: Plutella xylostella selection pressure and fitness of weedy relatives;Environ. Biosafety Res. 2 263–276

    Article  PubMed  Google Scholar 

  • McBride K E, Svab Z, Schaaf D J, Hogan P S, Stalker D M and Maliga P 1995 Amplification of a Chimeric Bacillus Gene in Chloroplasts Leads to an Extraordinary Level of an Insecticidal Protein in Tobacco;Bio-Technology 13 362–365

    CAS  PubMed  Google Scholar 

  • McPartlan H C and Dale P J 1994 An assessment of genetransfer by pollen from field-grown transgenic potatoes to nontransgenic potatoes and related species;Transgenic Res. 3 216–225

    Article  Google Scholar 

  • Meagher T R, Belanger F C and Day P R 2003 Using empirical data to model transgene dispersal;Philos. Trans. R. Soc. London B 358 115711–115762

    Article  Google Scholar 

  • Meier M S and Hilbeck A 2001 Influence of transgenicBacillus thuringiensis cornfed prey on prey preference of immatureChrysoperla carnea (Neuroptera: Chrysopidae);Basic Appl. Ecol. 2 35–44

    Article  CAS  Google Scholar 

  • Meier P and Wackernagel W 2003 Monitoring the spread of recombinant DNA from field plots with transgenic sugar beet plants by PCR and natural transformation ofPseudomonas stutzeri;Transgenic Res. 12 293–304

    Article  CAS  PubMed  Google Scholar 

  • Mendelsohn M, Kough J, Vaituzis Z and Matthews K 2003 AreBt crops safe?;Nature Biotechnol. 21 1003–1009

    Article  CAS  Google Scholar 

  • Metz M and Futterer J 2002 Biodiversity (Communications arising): suspect evidence of transgenic contamination;Nature (London) 416 600–601

    Article  CAS  Google Scholar 

  • Miller R M 1993 Nontarget and Ecological Effects of Transgenically Altered Disease Resistance in Crops-Possible Effects on the Mycorrhizal Symbiosis;Mol. Ecol. 2 327–335

    Article  Google Scholar 

  • Motavalli P P, Kremer R J, Fanga M and Meansa N E 2004 Impact of Genetically Modified Crops and Their Management on Soil Microbially Mediated Plant Nutrient Transformations;J. Environ. Qual. 33 816–824

    Article  CAS  PubMed  Google Scholar 

  • Musser F R and Shelton A M 2003 Bt sweet corn and selective insecticides: impacts on pests and predators;J. Econ. Entomol. 96 71–80

    Article  CAS  PubMed  Google Scholar 

  • Nelson G C and Bullock D S 2003 Simulating a relative environmental effect of glyphosate-resistant soybeans;Ecol. Econ. 45 189–202

    Article  Google Scholar 

  • Nielsen K M, van Elsas J D and Smalla K 2000 Transformation ofAcinetobacter sp. strain BD413(pFG4 Delta nptII) with transgenic plant DNA in soil microcosms and effects of kanamycin on selection of transformants;Appl. Environ. Microbiol. 66 1237–1242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nielsen K M, Van Elsas J D and Smalla K 2001 Dynamics, horizontal transfer and selection of novel DNA in bacterial populations in the phytosphere of transgenic plants;Ann. Microbiol. 51 79–94

    CAS  Google Scholar 

  • Nuffield Bioethics Committee2004The use of genetically modified crops in developing countries (London: Nuffield Bioethics Committee)

    Google Scholar 

  • O’Callaghan M, Glare T R, Burgess E P J and Malone L A 2005 Effect of plants genetically modified for insect resistance on non target organisms;Annu. Rev. Entomol. 50 271–292

    Article  PubMed  CAS  Google Scholar 

  • Pearce F 2002 The great Mexican maize scandal;New Sci. 174 14–16

    Google Scholar 

  • Picardnizou A L, Phamdelegue M H, Kerguelen V, Marilleau R, Olsen L, Grison R, Toppan A and Masson C 1995 Foraging Behavior of Honey-Bees (Apis mellifera L.) on Transgenic Oilseed Rape (Brassica napus L. Var Oleifera);Transgenic Res. 4 270–276

    Article  CAS  Google Scholar 

  • Pilcher C D, Obrycki J J, Rice M E and Lewis L C 1997 Preimaginal development, survival, and field abundance of insect predators on transgenicBacillus thuringiensis corn;Environ. Entomol. 26 446–454

    Article  Google Scholar 

  • Pilcher C D, Rice M E, Higgins R A and Bowling R 2001 Pollen drift fromBacillus thuringiensis corn: Efficacy against European corn borer (Lepidoptera: Crambidae) in adjacent rows of non-Bt corn;Environ. Entomol. 30 409–414

    Article  Google Scholar 

  • Ponsard S, Gutierrez A P and Mills N J 2002 Effect of Bt-toxin (Cry1Ac) in transgenic cotton on the adult longevity of four heteropteran predators;Environ. Entomol. 31 1197–1205

    Article  CAS  Google Scholar 

  • Purrington C B and Bergelson J 1999 Exploring the physiological basis of costs of herbicide resistance inArabidopsis thaliana;Am. Nat. 154 S82-S91

    Article  PubMed  Google Scholar 

  • Puterka G J, Bocchetti C, Dang P, Bell R L and Scorza R 2002 Pear transformed with a lytic peptide gene for disease control affects nontarget organism,pear psylla (Homoptera: Psyllidae);J. Econ. Entomol. 95 797–802

    Article  CAS  PubMed  Google Scholar 

  • Quist D and Chapela I H 2001 Transgenic DNA introgressed into traditional maize landraces in Oaxaca, Mexico;Nature (London) 414 541–543

    Article  CAS  Google Scholar 

  • Raps A, Kehr J, Gugerli P, Moar W J, Bigler F and Hilbeck A 2001 Immunological analysis of phloem sap ofBacillus thurigiensis corn and of the nontarget herbivoreRhopalosiphum padi (Homoptera: Aphididae) for the presence of Cry1Ab;Mol. Ecol. 10 525–533

    Article  CAS  PubMed  Google Scholar 

  • Reed G L, Jensen A S, Riebe J, Head G and Duan J J 2001 Transgenic Bt potato and conventional insecticides for Colorado potato beetle management: comparative efficacy and non-target impacts;Entomol. Exp. Appl. 100 89–100

    Article  CAS  Google Scholar 

  • Riddick E W, Dively G and Barbosa P 2000 Season-long abundance of generalist predators in transgenic versus non transgenic potato fields;J. Entomol. Sci. 35 349–359

    Article  Google Scholar 

  • Romeis J, Babendreier D and Wackers F L 2003a Consumption of snowdrop lectin (Galanthus nivalis agglutinin) causes direct effects on adult parasitic wasps;Oecologia 134 528–536

    Article  PubMed  Google Scholar 

  • Romeis J, Battini M and Bigler F 2003b Transgenic wheat with enhanced fungal resistance causes no effects onFolsomia candida (Collembola: Isotomidae);Pedobiologia 47 141–147

    Article  Google Scholar 

  • Romeis J, Dutton A and Bigler F 2004Bacillus thuringiensis toxin (Cry1Ab) has no direct effect on larvae of the green lacewingChrysoperla carnea (Stephens) (Neuroptera: Chrysopidae);J. Insect. Physiol. 50 175–183

    Article  CAS  PubMed  Google Scholar 

  • Saxena D, Flores S and Stotzky G 1999 Transgenic plants: insecticidal toxin in root exudates from Bt corn;Nature (London) 402 480

    Article  CAS  Google Scholar 

  • Saxena D, Flores S and Stotzky G 2002 Bt toxin is released in root exudates from 12 transgenic corn hybrids representing three transformation events;Soil Biol. Biochem. 34 133–137

    Article  CAS  Google Scholar 

  • Saxena D, Stewart C N, Altosaar I, Shu Q and Stotzky G 2004 Larvicidal Cry proteins fromBacillus thuringiensis are released in root exudates of transgenicB. thuringiensis corn, potato, and rice but not ofB. thuringiensis canola, cotton, and tobacco;Plant Physiol. Biochem. 42 383–387

    Article  CAS  PubMed  Google Scholar 

  • Saxena D and Stotzky G 2001aBacillus thuringiensis (Bt) toxin released from root exudates and biomass of Bt corn has no apparent effect on earthworms, nematodes, protozoa, bacteria and fungi in soil;Soil Biol. Biochem. 33 1225–1230

    Article  CAS  Google Scholar 

  • Saxena D and Stotzky G 2001bBt corn has a higher lignin content than non-Bt corn.;Am. J. Bot. 88 1704–1706

    Article  CAS  PubMed  Google Scholar 

  • Schmalenberger A and Tebbe C C 2002 Bacterial community composition in the rhizosphere of a transgenic, herbicideresistant maize (Zea mays) and comparison to its non-transgenic cultivar Bosphore;FEMS Microbiol. Ecol. 40 29–37

    Article  CAS  PubMed  Google Scholar 

  • Schmalenberger A and Tebbe C C 2003 Genetic profiling of noncultivated bacteria from the rhizospheres of sugar beet (Beta vulgaris) reveal field and annual variability but no effect of a transgenic herbicide resistance;Can. J. Microbiol. 49 1–8

    Article  CAS  PubMed  Google Scholar 

  • Schmitz G, Bartsch D and Pretscher P 2003 Selection of relevant non-target herbivores for monitoring the environmental effects of Bt maize pollen;Environ. Biosafety 2 117–132

    Article  Google Scholar 

  • Schuler T H, Denholm I, Jouanin L, Clark S J, Clark A J and Poppy G M 2001 Population-scale laboratory studies of the effect of transgenic plants on nontarget insects;Mol. Ecol. 10 1845–1853

    Article  CAS  PubMed  Google Scholar 

  • Schuler T H, Potting R P J, Denholm I, Clark S J, Clark A J, Stewart C N and Poppy G M 2003 Tritrophic choice experiments with Bt plants, the diamondback moth (Plutella xylostella) and the parasitoidCotesia plutellae;Transgenic Res. 12 351–361

    Article  CAS  PubMed  Google Scholar 

  • Setamou M, Bernal J S, Legaspi J C and Mirkov T E 2002 Effects of snowdrop lectin (Galanthus nivalis agglutinin) expressed in transgenic sugarcane on fitness ofCotesia flavipes (Hymenoptera: Braconidae), a parasitoid of the nontarget pestDiatraea saccharalis (Lepidoptera: Crambidae);Ann. Entomol. Soc. Am. 95 75–83

    Article  CAS  Google Scholar 

  • Shelton A M, Zhao J Z and Roush R T 2002 Economic, ecological, food safety and social consequences of the deployment of bt transgenic plants;Annu. Rev. Entomol. 47 845–881

    Article  CAS  PubMed  Google Scholar 

  • Simonet P 2000 An evaluation of the possibility of transferring DNA from GM crops to soil bacteria;OCL-Ol Corps Gras Lipides 7 320–323

    Article  CAS  Google Scholar 

  • Sims S R 1995Bacillus thuringiensis var kurstaki CryIA(c) protein expressed in transgenic cotton: Effects on beneficial and other non-target insects;Southw. Entomol. 20 493–500

    Google Scholar 

  • Snow A A, Pilson D Rieseberg L H, Paulsen M J, Pleskac N, Reagon M R, Wolf D E and Selbo S M 2003 A Bt transgene reduces herbivory and enhances fecundity in wild sunflowers;Ecol. Appl. 13 279–286

    Article  Google Scholar 

  • Stoger E, Williams S, Christou P, Down R E and Gatehouse J A 1999 Expression of the insecticidal lectin from snowdrop (Galanthus nivalis agglutinin; GNA) in transgenic wheat plants: effects on predation by the grain aphidSitobion avenae;Mol. Breed 5 65–73

    Article  CAS  Google Scholar 

  • Stotzky G 2000 Persistence and biological activity in soil of insecticidal proteins fromBacillus thuringiensis and of bacterial DNA bound on clays and humic acids;J. Environ. Qual. 29 691–705

    Article  CAS  Google Scholar 

  • Stotzky G 2002 Release, persistence and biological activity in soil of insecticidal proteins fromBacillus thuringiensis; ingenetically engineered organisms: Assessing environmental and human health effects (ed.) D K Letourneau and B E Lpern Burrows (Boca Raton, FL: CRC Press) pp 187–222

    Google Scholar 

  • Stewart C N, All J N, Raymer P L and Ramachandran S 1997 Increased fitness of transgenic insecticidal rapeseed under insect selection pressure;Mol. Ecol. 6 773–779

    Article  Google Scholar 

  • Stewart C Neal Jr Halfhill M D and Warkwick S I 2003 Transgene introgression from genetically modified crops to their wild relatives;Nature Rev. Genet. 4 806–817

    Article  CAS  PubMed  Google Scholar 

  • Tepfer D, Garcia-Gonzales R, Mansouri H, Seruga M, Message B, Leach F and Perica M C 2003 Homology-dependent DNA transfer from plants to a soil bacterium under laboratory conditions: implications in evolution and horizontal gene transfer;Trans genic Res. 12 425–437

    Article  CAS  Google Scholar 

  • Tomov B W, Bernal J S and Vinson S B 2003 Impacts of transgenic sugarcane expressing GNA lectin on parasitism of Mexican rice borer byParallorhogas pyralophagus (Marsh) (Hymenoptera: Braconidae);Environ. Entomol. 32 866–872

    Article  Google Scholar 

  • Tschenn J, Losey J E, Jesse L H, Obrycki J J and Hufbauer R 2001 Effects of corn plants and corn pollen on monarch butterfly (Lepidoptera: Danaidae) oviposition behavior;Environ. Entomol. 30 495–500

    Article  Google Scholar 

  • Turrini A, Sbrana C, Nuti M P, Pietrangeli B and Giovannetti M 2004 Development of a model system to assess the impact of genetically modified corn and aubergine plants on arbuscular mycorrhizal fungi;Plant Soil. 266 69–75

    Article  CAS  Google Scholar 

  • United States Environmental Protection Agency 2000Bt plantpesticides biopesticides registration action document http://www. epa.gov.oscpmont/sap/2000/october/brad3 sment.pdf

  • Vacher C, Weis A E, Hermann D, Kossler T, Young C and Hochberg M E 2004 Impact of ecological factors on the initial invasion of Bt transgenes into wild populations of birdseed rape (Brassica rapa);Theor. Appl. Genet. 109 806–814

    Article  PubMed  Google Scholar 

  • Velkov V V, Sokolov M S and Medvinsky A B 2003a The Problems of the State Regulation of Production of Transgenic Plants, (Russ.);Vestnik zashchity rastenii (Plant Protection News) 3 3–16

    Google Scholar 

  • Velkov V V, Sokolov M S and Medvinsky A B 2003b Assessment of the Ecological Risks of Production of the Transgenic Insecticidal Plants, (Russ.);Agrokhimiya (Agricultural Chemistry) 2 74–96

    Google Scholar 

  • Wang X, Ding X, Gopalakrishnan B, Morgan T D, Johnson Let al 1996 Characterisation of a 46 kDa insect chitinase from transgenic tobacco;Insect Biochem. Mol. Biol. 10 1055–1064

    Article  Google Scholar 

  • Wang W, Vinocur B and Altman A 2003 Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance;Planta. 218 1–14

    Article  CAS  PubMed  Google Scholar 

  • Watrud L S, Lee E H, Fairbrother A, Burdick C, Reichman J R, Bollman M, Storm M, King G and Van de Water P K 2004 Evidence for landscape-level, pollen-mediated gene flow from genetically modified creeping bentgrass with CP4 EPSPS as a marker;Proc. Natl. Acad. Sci. USA 101 14533–14538

    Article  CAS  PubMed  Google Scholar 

  • Wei-xiang Wu, Qing-fu Ye and Hang Min 2004 Effect of straws from Bt-transgenic rice on selected biological activities in water-flooded soil;Eur. J. Soil Biol. 40 15–22

    Article  Google Scholar 

  • Widmer F, Seidler R J and Watrud L S 1996 Sensitive detection of transgenic plant marker gene persistence in soil microcosms;Mol. Ecol. 5 603–613

    Article  CAS  Google Scholar 

  • Wisniewski J-P, Frangne P, Massonneau A and Dumas C 2002 Between myth and reality: genetically modified maize, an example of a sizeable scientific controversy;Biochimie 84 1095–1103

    Article  CAS  PubMed  Google Scholar 

  • Wold S, Burkness E C, Hutchinson W D and Venette R C 2001 In-field monitoring of beneficial insect populations in transgenic corn expressing aBacillus thuringiensis toxin;J. Entomol. Sci. 36 177–186

    Article  CAS  Google Scholar 

  • Wolt J D, Peterson R K D, Bystrak P and Meade T 2003 A screening level approach for nontarget insect risk assessment: Transgenic Bt corn pollen and the monarch butterfly (Lepidoptera: Danaidae);Environ. Entomol. 32 237–246

    Article  CAS  Google Scholar 

  • Wolfenbarger L L and Phifer P R 2000 Biotechnology and ecology the ecological risks and benefits of genetically engineered plants;Science 290 2088–2093

    Article  CAS  PubMed  Google Scholar 

  • Wraight C L, Zangerl A R, Carroll M J and Berenbaum M R 2000 Absence of toxicity ofBacillus thuringiensis pollen to black swallowtails under field conditions;Proc. Natl. Acad. Sci. USA 97 7700–7703

    Article  CAS  PubMed  Google Scholar 

  • Wu K, Peng Y and Jia S 2003 What we have learnt on impacts ofBt cotton on non-target organisms in China;AgBiotechNet 5 ABN 112 1171

    Google Scholar 

  • Wu K M and Guo Y Y 2005 The evolution of Cotton Pest Management practices in China;Annu. Rev. Entomol. 50 31–52

    Article  CAS  PubMed  Google Scholar 

  • Yu L, Berry R E and Croft B A 1997 Effects ofBacillus thuringiensis toxins in transgenic cotton and potato onFolsomia candida (Collembola: Isotomidae) andOppia nitens (Acari: Orbatidae);J. Econ. Entomol. 90 113–118

    Article  Google Scholar 

  • Zablotowicz R M and Reddy K N 2004 Impact of Glyphosate on theBradyrhizobium japonicum Symbiosis with Glyphosate-Resistant Transgenic Soybean: A Minireview;J. Environ. Qual. 33 825–831

    Article  CAS  PubMed  Google Scholar 

  • Zangerl A R, McKenna D, Wraight C L, Carroll M, Ficarello P, Warner R and Berenbaum M R 2001 Effects of exposure to event 176Bacillus thuringiensis corn pollen on monarch and black swallowtail caterpillars under field conditions;Proc. Natl. Acad. Sci. USA 98 11908–11912

    Article  CAS  PubMed  Google Scholar 

  • Zhu B, Lawrence J R, Warwick S I, Mason P, Braun L, Halfhill M D and Stewart C N Jr 2004 Inheritance of GFP-Bt transgenes fromBrassica napus in backcrosses with three wildB. rapa accessions;Environ. Biosafety Res. 3 45–54

    Article  CAS  PubMed  Google Scholar 

  • Zwahlen C, Hilbeck A, Gugerli P and Nentwig W 2003a Degradation of the Cry1Ab protein within transgenicBacillus thuringiensis corn tissue in the field;Mol. Ecol. 12 765–775

    Article  CAS  PubMed  Google Scholar 

  • Zwahlen C, Hilbeck A, Howald R and Nentwig W 2003b Effects of transgenic Bt corn litter on the earthwormLumbricus terrestris;Mol. Ecol. 12 1077–1086

    Article  CAS  PubMed  Google Scholar 

  • Zwahlen C, Nentwig W, Bigler F and Hilbeck A 2000 Tritrophic interactions of transgenicBacillus thuringiensis corn,Anaphothrips obscurus (Thysanoptera: Thripidae), and the predatorOrius majusculus (Heteroptera: Anthocoridae);Environ. Entomol. 29 846–850

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vassili V. Velkov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Velkov, V.V., Medvinsky, A.B., Sokolov, M.S. et al. Will transgenic plants adversely affect the environment?. J. Biosci. 30, 515–548 (2005). https://doi.org/10.1007/BF02703726

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02703726

Keywords

Navigation