Skip to main content
Log in

Impact toughness of high strength low alloy TMT reinforcement ribbed bar

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Charpy V-notch impact toughness of 600 MPa yield stress TMT rebars alloyed with copper, phosphorus, chromium and molybdenum has been evaluated. Subsize Charpy specimens were machined from the rebar keeping the tempered martensite rim intact. The copper-phosphorus rebar showed toughness of 35 J at room temperature. The toughness of copper-molybdenum and copper-chromium rebars was 52 J. The lower toughness of phosphorus steel is attributed to solid solution strengthening and segregation of phosphorus to grain boundaries. Due to superior corrosion resistance, copper-phosphorus TMT rebar is a candidate material in the construction sector.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • American Society of Testing Materials 1990Annual book of ASTM Standards, Philadelphia 03.01 197

  • Bureau of Indian Standards 1988 Indian Standards IS 1757, New Delhi

  • Biggs W D 1970 inPhysical metallurgy (ed.) R W Cahn (Amsterdam: North Holland Publishing Co.) p. 1217

    Google Scholar 

  • Briant C L and Messmer R P 1982Acta Metall. 30 1811

    Article  CAS  Google Scholar 

  • Bruggerman G A and Roberts J A 1975Metall. Trans. A6 755

    Google Scholar 

  • Dahl W 1992 inSteel I (Dusseldorf: Springer Verlag, Verlag Stahl Eisen) p. 265

    Google Scholar 

  • Dieter G 1976Mechanical metallurgy (New York: McGraw Hill Book Co.) pp. 264, 498

    Google Scholar 

  • Ermakov B S, Vologzhanina S A, Solntsev Y P and Kozachenko A V 2000Steel Trans. 30 72

    Google Scholar 

  • Galibois A, Krishnadev M R and Dubey A 1979Metall. Trans. A10 985

    Google Scholar 

  • Garcia de Andreas, Capdevila C, Madariaga I and Gutierrez I 2001Scr. Mater. 45 709

    Article  Google Scholar 

  • Gruzin P L and Minal V V 1964Phys. Met. Metallogr. USSR 17 62

    Google Scholar 

  • Haughton J L 1927J. Iron and Steel Inst. 115 417

    Google Scholar 

  • Honeycombe R W K 1981Steel, micro structure and properties (London: Edward Arnold; Ohio: American Society of Metals)

    Google Scholar 

  • Hornbogen E 1970 inPhysical metallurgy (ed.) R W Cahn (Amsterdam: North Holland Publishing Co.) p. 629

    Google Scholar 

  • Houdremont E 1956Handbook of special steel (Berlin: Springer Verlag) p. 630

    Google Scholar 

  • Kalmykov V V, Volovik N G, Goncharenko N F, Dmitriev Y V and Shilovskaya E N 1984Steel USSR 14 551

    Google Scholar 

  • Krauss G 1995Iron and Steel Inst. Jap. Int. 35 349

    CAS  Google Scholar 

  • McCallum R 1999Iron and Steel Maker 20 67

    Google Scholar 

  • Mines RAW 1989 inModern practice in stress and vibration analysis (ed.) J E Motterschead (New York: Pergamon Press)

    Google Scholar 

  • Nagumo M, Yagi T and Saitoh H 2000Acta Mater. 48 943

    Article  CAS  Google Scholar 

  • Norris D M 1979Eng. Fract. Mech. 11 261

    Article  Google Scholar 

  • NPC Information 1998 (Dusseldorf: Niobium Products Corporation)

  • Ölsen W 1949Stahl Eisen 69 468

    Google Scholar 

  • Panigrahi B K 2001Bull. Mater. Sci. 24 361

    Article  CAS  Google Scholar 

  • Pauling L 1960 inThe nature of the chemical bonds (Ithaca, New York: Cornell University Press) p. 93

    Google Scholar 

  • Pellini W S 1954 inASTM special technical publication, No. 158 (Philadelphia: ASTM) p. 216

    Google Scholar 

  • Pickering F B 1978Physical metallurgy and design of steels (London: Applied Science Publisher) Ch. 4

    Google Scholar 

  • Pilling J, Ridley N and Gooch D J 1982Acta Metall. 30 1587

    Article  CAS  Google Scholar 

  • Suzuki T, Shimono M and Kajiwara S 2001Mater. Sci. Engg. A312 104

    Article  CAS  Google Scholar 

  • Tsuchiyama T, Miyamoto Y and Takai S 2001Iron and Steel Inst. Jap. Int. 41 1047

    CAS  Google Scholar 

  • Tvergaard V and Needleman A 1986J. Mech. Phys. Solids 34 213

    Article  Google Scholar 

  • Tvergaard V and Needleman A 1988Int. J. Fract. 37 197

    Article  CAS  Google Scholar 

  • White C L and Liu T 1978Scr. Metall. 12 727

    Article  CAS  Google Scholar 

  • Wullaert R A 1970 inImpact testing of materials, ASTM STP-466 (Philadelphia: ASTM) p. 148

    Google Scholar 

  • Wullaert R A 1974 inFracture prevention and control (ed.) D W Hoeppner (Ohio: ASM) p. 255

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Panigrahi, B.K., Jain, S.K. Impact toughness of high strength low alloy TMT reinforcement ribbed bar. Bull Mater Sci 25, 319–324 (2002). https://doi.org/10.1007/BF02704125

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02704125

Keywords

Navigation