Skip to main content
Log in

GUT precursors and fixed points in higher-dimensional theories

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

Within the context of traditional logarithmic grand unification atM GUT ≈ 1016 GeV, we show that it is nevertheless possible to observe certain GUT states such asX andY gauge bosons at lower scales, perhaps even in the TeV range. We refer to such states as ‘GUT precursors’. Such states offer an interesting alternative possibility for new physics at the TeV scale, even when the scale of gauge coupling unification remains high, and suggest that it may be possible to probe GUT physics directly even within the context of high-scale gauge coupling unification. More generally, our results also suggest that it is possible to construct self-consistent ‘hybrid’ models containing widely separated energy scales, and give rise to a Kaluza-Klein realization of non-trivial fixed points in higher-dimensional gauge theories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. I Antoniadis,Phys. Lett. B246, 377 (1990)

    ADS  MathSciNet  Google Scholar 

  2. I Antoniadis, K Benakli and M Quiros,Phys. Lett. B331, 313 (1994); arXiv:hep-ph/9403290

    ADS  Google Scholar 

  3. N Arkani-Hamed, S Dimopoulos and G Dvali,Phys. Lett. B429, 263 (1998); arXiv:hep-ph/9803315

    ADS  Google Scholar 

  4. I Antoniadiset al, Phys. Lett. B436, 257 (1998); arXiv:hep-ph/9804398

    ADS  Google Scholar 

  5. K R Dienes, E Dudas and T Gherghetta,Phys. Lett. B436, 55 (1998); arXiv:hep-ph/9803466;Nucl. Phys. B537, 47 (1999); arXiv:hep-ph/9806292; arXiv:hep-ph/9807522

    ADS  MathSciNet  Google Scholar 

  6. E Witten,Nucl. Phys. B471, 135 (1996); arXiv:hep-th/9602070

    Article  ADS  MathSciNet  Google Scholar 

  7. J D Lykken,Phys. Rev. D54, 3693 (1996); arXiv:hep-th/9603133

    ADS  MathSciNet  Google Scholar 

  8. G Shiu and S-H H Tye,Phys. Rev. D58, 106007 (1998); arXiv:hep-th/9805157

    ADS  MathSciNet  Google Scholar 

  9. K R Dienes, E Dudas and T Gherghetta; arXiv:hep-th/0210294.

  10. Y Kawamura,Prog. Theor. Phys. 105, 999 (2001); arXiv:hep-ph/0012125;Prog. Theor. Phys. 105, 691 (2001); arXiv:hep-ph/0012352

    Article  ADS  Google Scholar 

  11. See, e.g., L J Hall and Y Nomura,Phys. Rev. D64, 055003 (2001); arXiv:hep-ph/0103125;Phys. Rev. D65, 125012 (2002); arXiv:hep-ph/0111068; arXiv:hep-ph/0205067; arXiv:hep-ph/0207079

    ADS  Google Scholar 

  12. See, e.g., A Hebecker and J March-Russell,Nucl. Phys. B613, 3 (2001); arXiv:hep-ph/0106166;Nucl. Phys. B625, 128 (2002); arXiv:hep-ph/0107039;Phys. Lett. B539, 119 (2002); arXiv:hep-ph/0204037

    Article  ADS  MathSciNet  Google Scholar 

  13. T R Taylor and G Veneziano,Phys. Lett. B212, 147 (1988)

    ADS  Google Scholar 

  14. Z Kakushadze and T R Taylor,Nucl. Phys. B562, 78 (1999); arXiv:hep-th/9905137

    Article  ADS  MathSciNet  Google Scholar 

  15. R Contino, L Pilo, R Rattazzi and E Trincherini,Nucl. Phys. B622, 227 (2002); arXiv:hep-ph/0108102

    Article  ADS  Google Scholar 

  16. K Agashe,J. High Energy Phys. 0105, 017 (2001); arXiv:hep-ph/0012182

    Article  ADS  Google Scholar 

  17. N Seiberg,Phys. Lett. B388, 753 (1996); arXiv:hep-th/9608111

    ADS  MathSciNet  Google Scholar 

  18. K A Intriligator, D R Morrison and N Seiberg,Nucl. Phys. B497, 56 (1997); arXiv:hep-th/9702198

    Article  ADS  MathSciNet  Google Scholar 

  19. N Seiberg,Phys. Lett. B390, 169 (1997); arXiv:hep-th/9609161

    ADS  MathSciNet  Google Scholar 

  20. We thank K Agashe, A Delgado and Y Nomura for discussions of this issue (private communication)

  21. K R Dienes, E Dudas and T Gherghetta, November 2002, as reported in a talk by E Dudas at PASCOS ’03, January 2003. Scanned transparencies available at http://theory.theory.tifr.res.in/pascos

  22. See, e.g., F P Correia, M G Schmidt and Z Tavartkiladze, hep-ph/0302038

  23. N Arkani-Hamed and M Schmaltz,Phys. Rev. D61, 033055 (2000); arXiv:hep-ph/9903417

    ADS  Google Scholar 

  24. See, e.g., R Sundrum,Phys. Rev. D59, 085010 (1999); arXiv:hep-ph/9807348

    ADS  MathSciNet  Google Scholar 

  25. N Arkani-Hamed, S Dimopoulos and J March-Russell,Phys. Rev. D63, 064020 (2001); arXiv:hep-th/9809124

    ADS  Google Scholar 

  26. K R Dienes, E Dudas, T Gherghetta and A Riotto,Nucl. Phys. B543, 387 (1999); arXiv:hep-ph/9809406

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dienes, K.R., Dudas, E. & Gherghetta, T. GUT precursors and fixed points in higher-dimensional theories. Pramana - J Phys 62, 219–228 (2004). https://doi.org/10.1007/BF02705084

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02705084

Keywords

PACS Nos

Navigation