Skip to main content
Log in

Inorganic membranes and membrane reactors

  • Featured Review
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The inorganic membrane reactor is a combined unit operation of chemical reactions and membrane separations. By having a membrane reactor, the downstream separation load can be reduced. Also, the yields can be increased and conversion can be improved for equilibrium limited reactions. However, many of the industrial chemical reactions take place at high temperature that the conventional polymeric membranes cannot withstand. A great deal of research has been done recently to develop ion-conducting ceramic membranes. Many of these have been successfully employed to form membrane reactors for many industrially relevant chemical reactions, such as hydrogenation, dehydrogenation, oxidation, coupled reactions, and decomposition reactions. An overview is given for the area of inorganic membrane preparations and membrane reactors. Many examples of petrochemical interests are presented, including hydrocarbon conversions and fuel cell applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdalla, B. K. and Elnashaie, S. S. E. H., “Fluidized-Bed Reactors Without and With Selective Membranes for the Catalytic Dehydrogenation of Ethylbenzene to Sryrene,”J. Membr.Sci.,101(1–2), 31 (1995).

    CAS  Google Scholar 

  • Adris, A. M., Elnashaie, S. S. E. H. and Hughes, R., “A Fluidized Bed Methane,”Can. J. Chem. Eng.,69, 1061 (1991).

    CAS  Google Scholar 

  • Alberti, G., Casciola, M. and Palombari, R., “Inorgano-Organic Proton Conducting Membranes for Fuel Cells and Sensors at Medium Temperatures”J. Membr. Sci.,172(1–2), 233 (2000).

    CAS  Google Scholar 

  • Alqahtany, H., Chiang, P. H., Eng, D., Stoukides, M. and Robbat, A., “Electrocatalytic Decomposition of Hydrogen-Sulfide”Catal. Lett.,13(3), 289 (1992).

    CAS  Google Scholar 

  • Alqahtany, H., Eng, D. and Stoukides, M, “Synthesis Gas-Production from Methane over an Iron Electrode in a Solid-Electrolyte Cell”,J. Electrochem. Soc.,140(6), 1677 (1993a).

    CAS  Google Scholar 

  • Alqahtany, H., Eng, D. and Stoukides, M., “Methane Steam Reforming over Fe Electrodes in a Solid-Electrolyte Cell”,Energ. Fuel,7(4), 495 (1993b).

    CAS  Google Scholar 

  • Anshits, A. G., Shigapov, A. N., Vereshchagin, S. N. and Shevnin, V. N., “Oxidative Conversion of Methane into C-2 Hydrocarbons on Silver Membrane Catalysts,”,Kinet. Catal.,30(5), 1103 (1989).

    Google Scholar 

  • Arashi, H. and Naito, H., “Oxygen Permeability in ZrO2-TiO2-Y2O3 System,”,Solid State Ionics,53, 431 (1992).

    Google Scholar 

  • Armor, J. N., “Applications of Catalytic Inorganic Membrane Reactors to Refinery Products”,,J. Membr. Sci.,147(2), 217 (1998).

    CAS  Google Scholar 

  • Armor, J. N., “Challenges in Membrane Catalysis”,Chem-tech,22, 557 (1992).

    CAS  Google Scholar 

  • Armor, J. N., Farris, T. S., Silveston, P. L., Hightower, J. W., Haag, W. O., Ross, J. R. H., Kaliaguine, S., Sarkany, A. and Geus, J. W., “Membrane Catalysis over Palladium and Its Alloys”,,Stud Surf. Sci. Catal.,75, Part B, 1362 (1993).

    Google Scholar 

  • Asano, K., Hibino, T. and Iwahara, H., “A Novel Solid Oxide Fuel-Cell System Using the Partial Oxidation of Methane”,,J. Electrochem. Soc.,142(10), 3241 (1995).

    CAS  Google Scholar 

  • Bafes, I. C., Constantinou, I. E. and Vayenas, C. G., “Partial Oxidation of Methane to Formaldehyde with 50% Yield in a Continuous Recycle Reactor Separator (CRRS)”,,Chem. Eng. J.,82(l–3)(Sp. Iss. Si.), 109 (2001).

    Google Scholar 

  • Beatrice, P., Pliangos, C., Worrell, W. L. and Vayenas, C. G., “Electrochemical Promotion of Ethylene and Propylene Oxidation on Pt Deposited on Yttria-Titania-Zirconia”,,Solid State Ionics,136(Sp. Iss. Si.), 833 (2000).

    Google Scholar 

  • Bieberle, A., Meier, L. P. and Gauckler, L. J., “The Electrochemistry of Ni Pattern Anodes Used as Solid Oxide Fuel Cell Model Electrodes”,J. Electrochem. Soc.,148(6), A646 (2001).

    CAS  Google Scholar 

  • Bitter, J. G. A., “Process and Apparatus for the Dehydration of Organic Compounds”,Br. Pat. Appl.,2, 201, 159A (1988).

    Google Scholar 

  • Boddeker, K. W., Peinemann, K.-V. and Nunes, S. P., (Guest Editors), “Membranes in Fuel Cells”,J. Membr. Sci.,185(1)(Special Issue), 1 (2001).

    CAS  Google Scholar 

  • Bouwmeester, H. J. M., Kruidhof, H., Burggraaf, A. J. and Gellings, P. J., “Oxygen Semipermeability of Erbia-Stabilized Bismuth Oxide”,Solid State Ionics,53, 460 (1992).

    Google Scholar 

  • Cavalca, C. A., Larsen, G., Vayenas, C. G. and Haller, G. L., “Electrochemical Modification of CH3OH Oxidation Selectivity and Activity on a Pt Single-Pellet Catalytic Reactor”,J. Phys. Chem.,97(23), 6115 (1993).

    CAS  Google Scholar 

  • Champagnie, A. M., Tsotsis, T. T., Minrt, R. G. and Wagner, E., “The Study of Ethane Dehydrogenation in a Catalytic Membrane Reactor”,J. Catal.,134, 713 (1992).

    CAS  Google Scholar 

  • Chan, K. K. and Brownstein, A. M., “Ceramic Membranes-Growth Prospects and Opportunities”,Ceram. Bull.,70, 703 (1991).

    CAS  Google Scholar 

  • Chen, C. S., Kruidhof, H., Bouwmeester, H. J. M., Verweij, H. and Burggraaf, A. J., “Oxygen Permeation through Oxygen Ion Oxide-Noble Metal Dual Phase Composites”,Solid State Ionics,86, 569 (1996).

    Google Scholar 

  • Cheng, Y S. and Yeung, K. L., “Palladium-Silver Composite Membranes by Electroless Plating Technique”,J. Membr. Sci.,158(1–2), 127 (1999).

    CAS  Google Scholar 

  • Chiang, P. H., Eng, D. and Stoukides, M., “Solid Electrolyte Aided Direct Coupling of Methane”,J. Catal.,139(2), 683 (1993).

    CAS  Google Scholar 

  • Chiang, P. H., Eng, D., Alqahtany, H. and Stoukides, M., “Nonoxidative Methane Coupling with the Aid of Solid Electrolytes”,Solid State Ionics,53, Part 1, 135 (1992).

    Google Scholar 

  • Cicero, D. C. and Jarr, L. A., “Application of Ceramic Membranes in Advanced Coal-Based Power-Generation Systems”,Separ. Sci. Technol.,25(13–15), 1455 (1990).

    CAS  Google Scholar 

  • Daub, K., Wunder, V. K. and Dittmeyer, R., “CVD Preparation of Catalytic Membranes for Reduction of Nitrates in Water”,Catal. Today,67(1–3), 257 (2001).

    CAS  Google Scholar 

  • Dou, S., Mason, C. R. and Pacey, P. D., “Mechanism of Oxygen Permeation through Lime-stablized Zirconia”,J. Electrochem. Soc.,132, 1843 (1985).

    CAS  Google Scholar 

  • Drioli, E. (Guest Editor), “Catarytic Membrane Reactors and Membrane Operations”,J. Membr. Sci.,181(lXSpecial Issue: 1999 Ravello Conference), 1 (2001).

    CAS  Google Scholar 

  • Edlund, D. J. and Pledger, W A., “Thermolysis of Hydrogen-Sulfide in a Metal-Membrane Reactor”,J. Membr. Sci.,77(2–3), 255 (1993).

    CAS  Google Scholar 

  • Edlund, D. J., Pledger, W A., Johnson B. M. and Friesen, D. T, “Toward Economical and Energy Efficient Production of Hydrogen from Coal using Metal-Membrane Reactors”, 5th Annu. Meet. NAMS, Lexington, KY, paper 11F (1992).

    Google Scholar 

  • Eng, D. and Stoukides, M., “The Catalytic and Electrocatalytic Coupling of Methane over Yttria-Stabilized Zirconia”,Catal. Lett.,9(1–2), 47 (1991a).

    CAS  Google Scholar 

  • Eng, D. and Stoukides, M., “Catalytic and Electrocatalytic Methane Oxidation with Solid Oxide Membranes”,Catal. Rev.,33(3–4), 375 (1991b).

    CAS  Google Scholar 

  • Eng, D., Chiang, P. H. and Stoukides, M, “Methane Oxidative Coupling — Technical and Economic-Evaluation of a Chemical Cogenerative Fuel-Cell”,Energ. Fuel,9(5), 794 (1995).

    CAS  Google Scholar 

  • Farris, T. S. and Armor, J. N., “Liquid-Phase Catalytic-Hydrogenation Using Palladium Alloy Membranes”,Appl. Catal., A-Gen.,96(1), 25 (1993).

    CAS  Google Scholar 

  • Gallaher, G. R., Gerdes, T. E. and Liu, P. K.T, “Experimental Evaluation of Dehydrogenations Using Catalytic Membrane Processes”,Separ. Sci. Technol.,28, 309 (1993).

    CAS  Google Scholar 

  • Goto, S., Assabumrungrat, S., Tagawa, T. and Praserthdam, P., “The Effect of Direction of Hydrogen Permeation on the Rate through a Composite Palladium Membrane”,J. Membr. Sci.,175(1), 19 (2000).

    CAS  Google Scholar 

  • Govind, R. and Atnoor, D., “Development of a Composite Palladium Membrane for Selective Hydrogen Separation at High Temperature”,Ind. Eng. Chem. Res.,30, 591 (1991).

    CAS  Google Scholar 

  • Gryaznov, V. M., “Platinum Metals as Components of Catalyst-Membrane Systems”,Platinum Met. Rev.,36, 70 (1992).

    CAS  Google Scholar 

  • Gryaznov, V. M., Ermilova, M. M. and Orekhova, N. V., “Membrane-Catalyst Systems for Selectivity Improvement in Dehydrogenation and Hydrogenation Reactions”,Catal. Today,67(1–3), 185 (2001).

    CAS  Google Scholar 

  • Gryaznov, V M., Gulíyanova, S. G. and Serov, Y M., “Role of Adsorbed Hydrogen and Oxygen Forms in Conversions of Oxygen-Containing Monocarbon Molecules on Membrane Catalysts”,USP Khim.,58(1), 58 (1989).

    CAS  Google Scholar 

  • Gryaznov, V M., Mischenko, A. P. and Sarylova, M. E., “Catalyst for Cyclization of Pentadiene-1,3 into Cyclopentene and Cyclopentane”, GB Pat.2, 187, 758 A (1987).

    Google Scholar 

  • Gryaznov, V. M., Serebryannikova, O. S. and Serov, Y M., “Preparation and Catalysis over Palladium Composite Membranes”,Appl. Catal.,A-Gen.,96, 15 (1993).

    CAS  Google Scholar 

  • Gryaznov, V. M, Vedernikov, V. I. and Gulíyanova, S. G., “Participation of Oxygen, Having Diffused through a Silver Membrane Catalyst, in Heterogeneous Oxidation Processes”,Kinet. Catal,27(1), 129 (1986).

    Google Scholar 

  • Guy, C, “Le Reacteurs a Membrane: Possibilities d’application dans l’industrie Petroliere et Petrochimique”,Rev. Inst. Fr. Pet.,47, 133 (1992).

    CAS  Google Scholar 

  • Hamakawa, S., Hibino, T. and Iwahara, H., “Electrochemical Methane Coupling Using Protonic Conductors”,J. Electrochem. Soc.,140, 459 (1993).

    CAS  Google Scholar 

  • Hamakawa, S., Hibino, T. and Iwahara, H., “Electrochemical Hydrogen Permeation in a Proton-Hole Mixed Conductor and Its Application to a Membrane Reactor”,J. Electrochem. Soc.,14, 1720 (1994).

    Google Scholar 

  • Han, P. and Worrell, W. L., “Mixed Oxygen Ion and p-type Conductivity in Yttria-Stabilized Zirconia Containing Terbia”,J. Electrochem. Soc.,142(12), 4235 (1995).

    CAS  Google Scholar 

  • Han, J., Zeng, Y. and Lin, Y. S., “Oxygen Permeation through Fluorite-Type Bismuth-Yttrium-Copper Oxide Membranes”,J. Membr. Sci.,132, 235 (1997).

    CAS  Google Scholar 

  • Hibino, T., Masegi, A. and Iwahara, H., “Electrocatalytic Oxidation of Methane by Alternating-Current Electrolysis Using Yttria-Stabilized Zirconia”,J. Electrochem. Soc.,142(10), 3262 (1995).

    CAS  Google Scholar 

  • Hibino, T., Ushiki, K., Kuwahara, Y, Masegi, A. and Iwahara, H., “Oxidative Coupling of CH4 Using Alkali-Metal Ion Conductors as a Solid Electrolyte”,J. Chem. Soc. Faraday-T.,92(13), 2393 (1996).

    CAS  Google Scholar 

  • Hibino, T., Hashimoto, A., Inoue, T., Tokuno, J., Yoshida, S. and Sano, M., “A Solid Oxide Fuel Cell Using an Exothermic Reaction as the Heat Source”,J. Electrochem. Soc.,148(6), A544 (2001).

    CAS  Google Scholar 

  • Hwang, S. T. and Kammermeyer, K., “Techniques of Chemistry, VII: Membranes in Separations”, Wiley Interscience, New York (1975).

    Google Scholar 

  • Ilinitch, O. M., Cuperus, F. P. and Nosova, L. V., et al., “Catalytic Membrane in Reduction of Aqueous Nitrates: Operational Principles and Catalytic Performance”,Catal. Today,56(1–3), 137 (2000).

    CAS  Google Scholar 

  • Ioannides, T. and Gavalas, G. R., “Catalytic Isobutane Dehydrogenation in a Dense Silica Membrane Reactor”,J. Membr. Sci.,77(2–3), 207 (1993).

    CAS  Google Scholar 

  • Itoh, N., “A Membrane Reactor Using Palladium”,AIChE J.,33, 1576 (1987).

    CAS  Google Scholar 

  • Itoh, N., Sanchez, M. A. and Xu, W C, et al., “Application of a Membrane Reactor System to Thermal-Decomposition of CO2”,J. Membr. Sci.,77(2–3), 245 (1993).

    CAS  Google Scholar 

  • Iwahara, H., Esaka T., Uchida, H., Yamauchi, T. and Okaki, K., “High Temperature Type Protonic Conductor Based on SrCeO3 and Its Application to the Extraction of Hydrogen Gas”,Solid State Ionics,18, 1003 (1986).

    Google Scholar 

  • Iwahara, H., Uchida, H. and Morimoto, K., “High Temperature Solid Electrolyte Fuel Cells Using Perovskite-Type Oxide Based on BaCeO3”,J. Electrochem. Soc.,137, 462 (1990).

    CAS  Google Scholar 

  • Iwahara, H., Matsumoto, H. and Takeuchi, K., “Electrochemical Dehumidification Using Proton Conducting Ceramics”,Solid State Ionics,136(Sp. Iss. Si.), 133 (2000).

    Google Scholar 

  • Jayaraman, V., Lin, Y S., Pakala, M. and Lin, R. Y, “Fabrication of Ultrathin Metallic Membranes on Ceramic Supports by Sputter Deposition”,J. Membr. Sci.,99, 89 (1995).

    CAS  Google Scholar 

  • Jiang, Y and Virkar, A. V., “A High Performance, Anode-Supported Solid Oxide Fuel Cell Operating on Direct Alcohol”,J. Electrochem. Soc.,148(7), A706 (2001).

    CAS  Google Scholar 

  • Jiang, Y, Yentekakis, I. V. and Vayenas, C. G., “Methane to Ethylene with 85-Percent Yield in a Gas Recycle Electrocatalytic Reactor-Separator”,Science,264(5165), 1563 (1994).

    CAS  PubMed  Google Scholar 

  • Jin, W, Li, S., Huang, P., Xu, N., Shi, J. and Lin, Y S., “Tubular Lanthanum Cobaltite Pervoskite-Type Membrane Reactors for Partial Oxidation of Methane to Syngas”,J. Membr. Sci.,166, 13 (2000).

    CAS  Google Scholar 

  • Jun, C. S. and Lee, K. H., “Preparation of Palladium Membranes from the Reaction of Pd(C3H3)(C5H5) with H-2: Wet-Impregnated Deposition”,J. Membr. Sci.,157(1), 107 (1999).

    CAS  Google Scholar 

  • Jun, C. S. and Lee, K. H., “Palladium and Palladium Alloy Composite Membranes Prepared by Metal-Organic Chemical Vapor Deposition Method (Cold-Wall)”,J. Membr. Sci.,176(1), 121 (2000).

    CAS  Google Scholar 

  • Jurado, J. R., Moure, C, Duran, P. and Valverde, N., “Preparation and Electrical Properties of Oxygen Conductors in the Bi2O3-Y2O3 System”,Solid State Ionics,28, 518 (1988).

    Google Scholar 

  • Kaloyannis, A. and Vayenas, C. G., “Non-Faradaic Electrochemical Modification of Catalytic Activity. 11. Ethane Oxidation on Pt”,J. Catal,171(1), 148 (1997).

    CAS  Google Scholar 

  • Kikuchi, E., Uemiya, S., Sato, N., Inoue, H., Ando, H. and Matauda, T., “Reactor Using Microporous Glass-Supported Thin Film of Palladium Application to the Water Gas Shift Reaction”,Chem. Lett.,489 (1989a).

  • Kikuchi, E., Uemiya, S., Sato, N., Inoue, H., Ando, H. and Matsuda, T., “Membrane Reactor Using Microporous Glass Supported Thin Film of Palladium”,Chem. Lett, 489 (1989b).

  • Kim, J. and Lin, Y S., “Sol-Gel Synthesis and Characterization of Yttria Stabilized Zirconia Membranes”,J. Membr. Sci.139, 75 (1998).

    CAS  Google Scholar 

  • Kim, J. and Lin, Y S., “Synthesis and Oxygen Permeation Properties of Ceramic-Metal Dual-Phase Memebranes”,J. Membr. Sci.,67, 123 (2000).

    Google Scholar 

  • Kim, H., Park, S., Vohs, J. M. and Gorte, R. J., “Direct Oxidation of Liquid Fuels in a Solid Oxide Fuel Cell”,J. Electrochem. Soc.,148(7), A693 (2001).

    CAS  Google Scholar 

  • Kobayashi, T., Morishita, S., Abe, K. and Iwahara, H., “Reduction of Nitrogen Oxide by a Steam Electrolysis Cell Using a Proton Conducting Electrolyte”,Solid State Ionics,86(8)(Part 1), 603 (1996)

    Google Scholar 

  • Kobayashi, T., Abe, K., Ukyo, Y and Iwahara, H., “Reduction of Nitrogen Oxide Using a Perovskite-Type Protonic Conductor SrZr0.9- Yb0.1O3-α”,Electrochem.,68(6), 494 (2000a).

    CAS  Google Scholar 

  • Kobayashi, T., Yamazaki, K., Abe, K., Ukyo, Y and Iwahara, H., “Removal of Nitrogen Oxide by Steam Electrolysis Cell with Proton Conducting Ceramics and aCo/Al2O3 Catalyst”,J. Ceram. Soc. Jpn.,108(6), 554 (2000b).

    CAS  Google Scholar 

  • Kobayashi, T., Abe, K., Ukyo, Y and Iwahara, H., “Reduction ofNitrogen Oxide by Steam Electrolysis Cell Using a Protonic Conductor SrZr0.9Yb0.1O3-α and the Catalyst Sr/Al2O3“,Solid State Ionics,134(3–4), 241 (2000c).

    CAS  Google Scholar 

  • Konno, M., Shindo, M., Sugawara, S. and Saito, S., “A Composite Palladium and Porous Aluminum Oxide Membrane for Hydrogen Gas Separation”,J. Membr. Sci.,37, 193 (1988).

    CAS  Google Scholar 

  • Kreuer, K. D., “On the Development of Proton Conducting Materials for Technological Applications”,Solid State Ionics,97, 1 (1997).

    CAS  Google Scholar 

  • Kruidhof, H., Bouwmeester, H. J. M. V, Doom, R. H. E. and Burggraaf, A. J., “Influence of Order-Disorder Transition on Oxygen Permeability Through Selected Nonstoichiometric Perovskite-Type Oxides”,Solid State Ionics,63–65B, 816 (1993).

    Google Scholar 

  • Langguth, J., Dittmeyer, R., Hofmann, H. and Tomandl, G., “Studies on Oxidative Coupling of Methane Using High-Temperature Proton-Conducting Membranes”,Appl. Catal, A-Gen,158(1–2), 287 (1997a).

    CAS  Google Scholar 

  • Langguth, J., Dittmeyer, R., Hofinann, H. and Tomandl, G., “Ceramic High Temperature Proton Conductors as a Membrane Concept for Oxidative Coupling of Methane”,Chem.-Ing.-Tech,69(3), 354 (1997b).

    CAS  Google Scholar 

  • Li, A., Liang, W. and Hughes, R., “The Effect of Carbon Monoxide and Steam on the Hydrogen Permeability of a Pd/Stainless Steel Membrane”,J. Membr. Sci.,165(1), 135 (2000).

    CAS  Google Scholar 

  • Li, Z. Y., Macda, H., Kusakabe, K., Morooka, S., Anzai, H. and Akiyama, S., “Preparation of Palladium-Silver Alloy Membranes for Hydrogen Separation by the Spray Pyrolysis Method”,J. Membr. Sci.,78, 247 (1993).

    CAS  Google Scholar 

  • Lin, Y. S. and Zeng, Y, “Catalytic Properties of Oxygen Semipermeable Perovskite-Type Ceramic Membrane Materials for Oxidative Coupling of Methane”,J. Catal,164(1), 220 (1996).

    CAS  Google Scholar 

  • Lin, Y S. and Zeng, Y, “Catalytic Properties of Oxygen Semipermeable Perovskite-Type Ceramic Membrane Materials for Oxidative Coupling of Methane [164 (1), 220 (1996)]”,J. Catal,168(2), 546 (1997).

    CAS  Google Scholar 

  • Marnellos, G., Zisekas, S. and Stoukides, M., “Synthesis of Ammonia at Atmospheric Pressure with the Use of Solid State Proton Conductors”,J. Catal,193(1), 80 (2000).

    CAS  Google Scholar 

  • Matsuda, T., Koike, I., Kubo, N. and Kikuchi, E., “Dehydrogenation of Isobutane to Isobutene in a Palladium Membrane Reactor”,Appl. Catal, A-Gen.,96, 3 (1993).

    CAS  Google Scholar 

  • McKenna, E. A., Othoneos, A., Kiratzis, N. and Stoukides, M., “Synthesis of HCN in a Solid-Electrolyte-Cell Reactor”,Ind. Eng. Chem. Res.,32(9), 1904 (1993).

    CAS  Google Scholar 

  • Michaels, A. S., “New Separation Technique for the CPI”,Chem. Eng. Prog.,64(12), 31 (1968).

    CAS  Google Scholar 

  • Michaels, J.N. and Vayenas, C. G., “Kinetics of Vapor-Phase Electrochemical Oxidative Dehydrogenation of Ethylbeneze”,J. Catal,85, 477 (1984).

    CAS  Google Scholar 

  • Morooka, S., Yan, S. C, Yokoyama, S. and Kusakabe, K., “Palladium Membrane Formed in Macropores of Support Tube by Chemical Vapor Deposition with Crossflow Through a Porous Wall”,Separ. Sci. Technol.,30, 2877 (1995).

    CAS  Google Scholar 

  • Moser, W. R., Becker, Y, Dixon, A. G. and Ma, Y H., “Catalytic Inorganic Membranes, and Their Modification for Use in Catalyzed Chemical Processes”, 5th Annu. Meet. NAMS, Lexington, KY, paper 11E (1992).

    Google Scholar 

  • Nagamoto, H. and Inoue, H., “Analysis of Mechanism of Ethylene Hydrogenation by Hydrogen Permeating Palladium Membrane”,J. Chem. Eng. Jpn.,14, 377 (1981).

    CAS  Google Scholar 

  • Nagamoto, H. and Inoue, H., “A Reactor with Catalytic Membrane Permeated by Hydrogen”,Chem. Eng. Commun.,34, 315 (1985).

    CAS  Google Scholar 

  • Nagamoto, H. and Inoue, H., «The Hydrogenation of 1,3-Butadiene over a Palladium Membrane”,Bull. Chem. Soc. Jpn.,59, 3935 (1986).

    CAS  Google Scholar 

  • Nam, S. E., Lee, S. H. and Lee, K. H., “Preparation of a Palladium Alloy Composite Membrane Supported in a Porous Stainless Steel by Vacuum Electrodeposition”,J. Membr. Sci.,153(2), 163 (1999).

    CAS  Google Scholar 

  • Neomagus, H. W. J. P., vanSwaaij, W. P. M. and Versteeg, G. F., “The Catalytic Oxidation of H2S in a Stainless Steel Membrane Reactor with Separate Feed of Reactants”,J. Membr. Sci.,148(2), 147 (1998).

    CAS  Google Scholar 

  • Neomagus, H. W. J. P., Saracco, G., Wessel, H. F. W. and Versteeg, G. F., “The Catalytic Combustion of Natural Gas in a Membrane Reactor with Separate Feed of Reactants”,Chem. Eng. J.,77(3), 165 (2000).

    CAS  Google Scholar 

  • Nigara, Y, Mizusaki, J. and Ishigame, M., “Measurement of Oxygen Permeability in CeO2 Doped CSZ”,Solid State Ionics,79, 208 (1995).

    CAS  Google Scholar 

  • Nigara, Y, Watanabe, K., Kawamura, K., Mizusaki, J. and Ishigame, M., “Oxygen Permeation in ZrO2-CeO2-CaO for Application to Oxygen Separation from Thermally Decomposed H2O”,J. Electrochem. Soc.,144(3), 1050 (1997).

    CAS  Google Scholar 

  • Oertel, M., Schmitz, J., Weirich, W., Jendryssek-Neumann, D. and Schulten, R., “Steam Reforming of Natural Gas with Integrated Hydrogen Separation for Hydrogen Production”,Chem. Eng. Technol.,10, 248 (1987).

    Google Scholar 

  • Okubo, T., Haruta, K., Kusakabe, K., Morooka, S., Anzai, H. and Akiyama, S., “Equilibrium Shift of Dehydrogenation at Short Space-Time with Hollow Fiber Ceramic Membrane”,Ind. Eng. Chem. Res.,30, 614 (1991).

    CAS  Google Scholar 

  • Otsuka, K. and Yamanaka, I., “Electrochemical Cells as Reactors for Selective Oxygenation of Hydrocarbons at Low Temperature”,Catal. Today,41(4), 311 (1998).

    CAS  Google Scholar 

  • Otsuka, K., Ishizuka, K. and Yamanaka, I., “Synthesis of Cresols by Applying H2-O2 Fuel-Cell Reaction”,Electrochim. Acta.,37(13), 2549 (1992).

    CAS  Google Scholar 

  • Pan, X. L., Liu, B. J., Xiong, G. X., Sheng, S. S., Liu, J. and Yang, W. S., “Exploration of Cinnamaldehyde Hydrogenation in Co-Pt/Gamma-A12O3 Catalytic Membrane Reactors”,Catal. Lett.,66(3), 125 (2000).

    CAS  Google Scholar 

  • Panagos, E., Voudouris, I. and Stoukides, M, “Modelling of Equilibrium Limited Hydrogenation Reactions Carried Out in H+ Conducting Solid Oxide Membrane Reactors”,Chem. Eng. Sci.,51(11), 3175 (1996).

    CAS  Google Scholar 

  • Peterson, D. and Winnick, J., “A Hydrogen Sulfide Fuel Cell Using a Proton-Conducting Solid Electrolyte”,J. Electrochem. Soc.,143(3), L55 (1996).

    CAS  Google Scholar 

  • Petrolekas, P. D., Balomenou, S. and Vayenas, C. G., “Electrochemical Promotion of Ethylene Oxidation on Pt Catalyst Films Deposited on CeO2”,J. Electrochem. Soc.,145(4), 1202 (1998).

    CAS  Google Scholar 

  • Pliangos, C, Raptis, C, Badas, T. and Vayenas, C. G., “Electrochemical Promotion of No Reduction by C3H6 on Rh/YSC Catalyst-Electrodes”,Solid State Ionics,136(Sp. Iss. Si.), 767 (2000).

    Google Scholar 

  • Qi, X. W. and Lin, Y S., “Electrical Conducting and Proton-Conducting Terbium-Doped Strontium Cerate Membrane”,Solid State Ionics,120(1–4), 85 (1999).

    CAS  Google Scholar 

  • Qi, X. W., Lin, Y. S. and Swartz, S. L., “Electric Transport and Oxygen Permeation Properties of Lanthanum Cobalite Membranes Synthesized by Different Methods”,Ind. Eng. Chem. Res.,39(3), 646 (2000).

    CAS  Google Scholar 

  • Qi, X. W. and Lin, Y S., “Electrical Conduction and Hydrogen Permeation Through Mixed Proton-Electron Conducting Strontium Cerate Membranes”,Solid State Ionics,130(1–2), 149 (2000).

    CAS  Google Scholar 

  • Qiu, L., Lee, T. H., Liu, L. M., Yang, Y. L. and Jacobson, A. J., “Oxygen Permeation Studies of SrCo0.8Fe0.2O3-8”,Solid State Ionics,76, 321 (1995).

    CAS  Google Scholar 

  • Raich, B. A. and Foley, H. C, “Supra-Equilibrium Conversion in Palladium Membrane Reactors — Kinetic Sensitivity and Time-Dependence”,Appl. Catal, A-Gen.,129(2), 167 (1995).

    CAS  Google Scholar 

  • Raich, B. A. and Foley, H. C, “Ethanol Dehydrogenation with a Palladium Membrane Reactor: An Alternative to Wacker Chemistry”,Ind. Eng. Chem. Res.,37(10), 3888 (1998).

    CAS  Google Scholar 

  • Roth, J. F., “Future Catalysis for the Production of Chemicals”,Stud. Surf. Catal,38, 925 (1988).

    Google Scholar 

  • Saracco, G., Versteeg, G. F. and Vanswaaij, W. P. M, “Current Hurdles to the Success of High-Temperature Membrane Reactors”,J. Membr. Sci.,95(2), 105 (1994).

    CAS  Google Scholar 

  • Saracco, G. and Specchia, V., “Catalytic Inorganic-Membrane Reactors — Present Experience and Future Opportunities”,Catal. Rev.,36(2), 305 (1994).

    CAS  Google Scholar 

  • Saracco, G., Neomagus, H. W. J. P., Versteeg, G. F. and vanSwaaij, W.P. M., “High-Temperature Membrane Reactors: Potential and Problems”,Chem. Eng. Sci.,54(13–14), 1997 (1999).

    CAS  Google Scholar 

  • Seok, D. R. and Hwang, S. T, “Recent Development in Membrane Reactors”,Stud. Surf. Sci. Catal.,54, 248 (1990).

    Google Scholar 

  • She, Y., Han, J. and Ma, Y. H., “Palladium Membrane Reactor for the Dehydrogenation of Ethylbenzene to Styrene”,Catal. Today,67(1–3), 43 (2001).

    CAS  Google Scholar 

  • Shu, J., Grandjean, B. P. A., Ghali, E. and Kaliaguine, S., “Simultaneous Deposition of Pd and Ag on Porous Stainless Steel by Electroless Plating”,J. Membr. Sci.,77, 181 (1993).

    CAS  Google Scholar 

  • Shu, J., Grandjean, B. P. A., vanSeste, A. and Kaliaguine, S., “Catalytic Palladium-based Membrane Reactors: A Review”,Can. J. Chem. Eng,69, 1036 (1991).

    CAS  Google Scholar 

  • Song, J. Y and Hwang, S. T., “Formaldehyde Production from Methanol Using a Porous Vycor Glass Membrane Reactor”,J. Membr. Sci.,57, 95 (1991).

    CAS  Google Scholar 

  • Souleimanova, R. S., Mukasyan, A. S. and Varma, A., “Effects of Osmosis on Microstructure of Pd-Composite Membranes Synthesized by Electroless Plating Technique”,J. Membr. Sci.,166(2), 249 (2000).

    CAS  Google Scholar 

  • Stevenson, J. W., Armstrong, T. R., Carmeim, R. D., Pederson, L. R. and Weber, L. R., “Electrochemical Properties of Mixed Conducting Perovskite La1-xMxCo1-yFeyO3-8 (M=Sr, Ba, Ca)”,J. Electrochem. Soc.,143, 2722 (1996).

    CAS  Google Scholar 

  • Stoukides, M., “Solid-Electrolyte Membrane Reactors: Current Experience and Future Outlook”,Catal. Rev.,42(1–2), 1 (2000).

    CAS  Google Scholar 

  • Teraoka, Y., Nobunaga, T. and Yamazoe, N., “Effect of Cation Substitution on the Oxygen Semipermeability of Perovskite-Type Oxides”,Chem. Lett,503 (1988).

  • Teraoka, Y., Zhang, H. M., Furukawa, S. and Yamazoe, N., “Oxygen Permeation through Perovskite-type Oxides”,Chem. Lett,1745 (1985).

  • Teymouri, E., Bagherzadeh, E., Petit, C, Rehspringer, J. L., Libs, S. and Kienneman, A., “Reactivity of Perovskites on Oxidative Coupling of Methane”,J. Material Sci.,30, 3005 (1993).

    Google Scholar 

  • Tiscareno-Lechuga, F., Hill, G. C, Jr. and Anderson, M. A., “Experimental Studies of the Non-Oxidative Dehydrogenation of Ethylbenzene Using a Membrane Reactor”, Appl.Catal. A-Gen,96, 33 (1993).

    CAS  Google Scholar 

  • Tsai, C. Y, Dixon, A. G., Ma, Y H., Moser, W. R. and Pascucci, M. R., “Dense Perovskite La1-xMxC1-yFeyO3-8 (M=Sr, Ba, Ca) Membrane Synthesis, Application, and Characterization”,J. Am. Ceram. Soc.,81, 1437 (1998).

    CAS  Google Scholar 

  • Tsotsis, T. T., Champagnie, A. M., Vasileiadis, S. P., Ziaka, Z. D. and Minet, R. G., “Packed-Bed Catalytic Membrane Reactors”,Chem. Eng. Sci.,47(9–11), 2903 (1992).

    CAS  Google Scholar 

  • Tsotsis, T. T., Champagnie, A. M., Vasileidas, S. P., Ziaka, A. D. and Minet, R. G., “The Enhancement of Reaction Yield through the Use of High Temperature Membrane Reactors”,Separ. Sci. Technol,28, 397 (1993).

    CAS  Google Scholar 

  • Tuller, H. L., “Mixed Ionic-Electronic Conduction in a Number of Fluorite and Pyrochlore Compounds”,Solid State Ionics,52, 135 (1992).

    CAS  Google Scholar 

  • Uemiya, S., Kude, Y., Sugino, K., Sato, N., Matsuda, T. and Kikuchi, E., “A Palladium/Porous-Glass Composite Membrane for Hydrogen Separation”,Chem. Lett, 1687 (1988).

  • Uemiya, S., Matsuda, H. and Kikuchi, E., “Aromatization of Propane Assisted by Palladium Membrane Reactor”,Chem. Lett., 1335 (1990).

  • Uemiya, S., Sato, N., Ando, H., Matsuda, T. and Kikuchi, E., “Steam Reforming of Methanol in a Hydrogen Permeable Membrane Reactor”,Appl. Catal. A-Gen.,67, 223 (1991a).

    CAS  Google Scholar 

  • Uemiya, S., Sato, N., Ando, N. and Kikuchi, E., “The Water Gas Shift Reaction Assisted by a Palladium Membrane Reactor”,Ind. Eng. Chem. Res.,30, 585 (1991b).

    CAS  Google Scholar 

  • Uemiya, S., Matsuda, T. and Kikuchi, E., “Hydrogen Permeable Palladium-Silver Alloy Membrane Supported on Porous Ceramics”,J. Membr. Sci.,56, 325 (1991c).

    Google Scholar 

  • Uemiya, S., Sato, N., Ando, H., Kude, Y, Matsuda, T. and Kikuchi, E., “Separation of Hydrogen Through Palladium Thin Film Supported on a Porous Glass Tube”,J. Membr. Sci.,56, 303 (1991d).

    CAS  Google Scholar 

  • Uemiya, S., Koike, I. and Kikuchi, E., “Promotion of the Conversion of Propane to Aromatics by Use of a Palladium Membrane”,Appl. Catal. A-Gen.,76, 171 (1991e).

    CAS  Google Scholar 

  • Uemiya, S., Koseki, M. and Kojima, T., “Preparation of Highly Permeable Membranes for Hydrogen Separation Using a CVD Technique”, in Ma, YH. (Ed.), Proceedings of the Third International Conference on Inorganic Membranes, Worcester, MA, 545 (1994).

  • Vayenas, C. G., Bebelis, S., Yentekakis, I. V. and Linz, H. G., “Non-Faradaic Electrochemical Modification of Catalytic Activity: A Status Report”,Catal. Today,11, 303 (1992).

    CAS  Google Scholar 

  • Xomeritakis, G. and Lin, Y. S., “Tabrication of Thin Palladium Membrane Support in a Porous Ceramic Substrate by Chemical Vapor Deposition”,J. Membr. Sci.,120, 261 (1996).

    CAS  Google Scholar 

  • Xomeritakis, G. and Lin, Y. S., “Fabrication of Thin Membranes by MOCVD and Sputtering”,J. Membr. Sci.,133, 217 (1997).

    CAS  Google Scholar 

  • Xu, S. J. and Thomson, W. J., “Stability of La0.6Sr0.4Co0.2Fe0.8O3-8 Perovskite Membranes in Reducing and Nonreducing Environments”,Ind. Eng. Chem. Res.,37, 1290 (1998).

    CAS  Google Scholar 

  • Yajima, T., Koide, K., Takai, H., Fukatsu, N. and Iwahara, H., “Application of Hydrogen Sensor Using Proton Conductive Ceramics as a Solid Electrolyte to Aluminum Casting Industries”,Solid State Ionics,79, 333 (1995).

    CAS  Google Scholar 

  • Yamanaka, I. and Otsuka, K., “Partial Oxidation of Cyclohexane with Reductively Activated Dioxygen on SmCl3 Supported on Graphite During H2-O2 Fuel-Cell Reactions”,J. Chem. Soc. Faraday-T.,89(11), 1791 (1993a).

    CAS  Google Scholar 

  • Yamanaka, I. and Otsuka, K., “Partial Oxidation of Alkanes and Aromatics with Activated Oxygen over an SmCl3-Embedded Graphite Cathode”,J. Alloy Compd.,193(1–2), 56 (1993b).

    CAS  Google Scholar 

  • Yan, S. et al., “Thin Palladium Membrane Formed in Support Pores by Metal-Organic Chemical Vapor Deposition Method and Application to Hydrogen Separation”,lnd. Eng Chem. Res.,33, 616 (1994).

    CAS  Google Scholar 

  • Yeung, K. L., Christiansen, S. C. and Varma, A., “Palladium Composite Membranes by Electroless Plating Technique — Relationships Between Plating Kinetics, Film Microstructure and Membrane Performance”,J. Membr. Sci.,159(1–2), 107 (1999).

    CAS  Google Scholar 

  • Yiokari, C. G., Pitselis, G. E., Polydoros, D. G., et al., “High-Pressure Electrochemical Promotion of Ammonia Synthesis over an Industrial Iron Catalyst”,J. Phys. Chem., A 104(46), 10600 (2000).

    Google Scholar 

  • Zaman, J. and Chakma, A., “Inorganic Membrane Reactors”,J. Membr. Sci.,92(1), 1 (1994).

    CAS  Google Scholar 

  • Zaspalis, V. T., vanPraag, W., Keizer, K., vanOmmen, J. G., Ross, J.H. R. and Burggraaf, A. J., “Reactor Studies Using Alumina Separation Membranes for the Dehydrogenation of Methanol and Normal-Butane”,Appl. Catal. A-Gen.,74(2), 223 (1991).

    CAS  Google Scholar 

  • Zeng, Y. and Lin, Y. S., “Oxidative Coupling of Methane on Improved Bismuth Oxide MembraneReactors”, AIChE J.,47(2), 436 (2001).

    CAS  Google Scholar 

  • Zeng, Y and Lin, Y S., “Oxygen Permeation and Oxidative Coupling of Methane in Yttria Doped Bismuth Oxide Membrane Reactor”,J. Catal.,193(1), 58 (2000).

    CAS  Google Scholar 

  • Zeng, Y and Lin, Y S., “Oxidative Coupling of Methane on Improved Bismuth Oxide Membrane Reactors”,AIChE J.,47(2), 436 (2001).

    CAS  Google Scholar 

  • Zhang, K., Yang, Y L., Ponnusamy, D., Jacobson, A. J. and Salama, K., “Effect of Microstructure on Oxygen Permeation in SrCo0.8Fe0.2-O3-8,”,J. Material Sci.,34, 1367 (1999).

    CAS  Google Scholar 

  • Ziaka, Z. D., Minet, R. G. and Tsotsis, T. T., “A High Temperature Catalytic Membrane Reactor for Propane Dehydrogenation”,J. Membr. Sci.,77, 221 (1993).

    CAS  Google Scholar 

  • Ziegler, S., Theis, J. and Fritsch, D., “Palladium Modified Porous Polymeric Membranes and Their Performance in Selective Hydrogenation of Propyne”,J. Membr. Sci.,187(1–2), 71 (2001).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sun-Tak Hwang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hwang, ST. Inorganic membranes and membrane reactors. Korean J. Chem. Eng. 18, 775–787 (2001). https://doi.org/10.1007/BF02705597

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02705597

Key words

Navigation