Skip to main content
Log in

Metabolic characteristics of an aerobe isolated from a methylotrophic methanogenic enrichment culture

  • Articles
  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

An anaerobic methylotrophic methanogenic enrichment culture, with sustained metabolic characteristics, including that of methanation for over a decade, was the choice of the present study on interspecies interactions. Growth and methanation by the enrichment were suppressed in the presence of antibiotics, and no methanogen grown on methanol could be isolated using stringent techniques. The present study confirmed syntrophic metabolic interactions in this enrichment with the isolation of a strain ofPseudomonas sp. The organism had characteristic metabolic versatility in metabolizing a variety of substrates including alcohols, aliphatic acids, amino acids, and sugars. Anaerobic growth was favoured with nitrate in the growth medium. Cells grown anaerobically with methanol, revealed maximal nitrate reductase activity. Constitutive oxidative activity of the membrane system emerged from the high-specific oxygen uptake and nitrate reductase activities of the aerobically and anerobically grown cells respectively. Cells grown anaerobically on various alcohols effectively oxidized methanol in the presence of flavins, cofactor FAD and the methanogenic cofactor F420, suggesting a constitutive alcohol oxidizing capacity. In cells grown anaerobically on methanol, the rate of methanol oxidation with F420 was three times that of FAD. Efficient utilization of alcohols in the presence of F420 is a novel feature of the present study. The results suggest that utilization of methanol by the mixed culture would involve metabolic interactions between thePseudomonas sp. and the methanogen(s). Methylotrophic, methanogenic partnership involving an aerobe is a novel feature hitherto unreported among anaerobic syntrophic associations and is of ecological significance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Albrecht R M, Rasmussen D H, Keller C S and Hinsdill R D 1976 Preparation of cultured cells for SEM: air drying from organic solvents;J. Microsc. 108 21–29

    PubMed  CAS  Google Scholar 

  • Anthony C and Zatman L J 1967 The microbial oxidation of methanol;Biochem. J. 104 960–969

    PubMed  CAS  Google Scholar 

  • Archer D B 1984 Biochemistry of methanogenesis by mixed cultures;Biochem. Soc. Trans. 12 1144–1146

    PubMed  CAS  Google Scholar 

  • Atlas R M 1997Handbook of microbiological media (ed.) L C Parks, 2nd edition (Boca Raton: CRC press)

    Google Scholar 

  • Blaut M 1994 Metabolism of methanogens;Antonie Van Leeuwenhoek 66 187–208

    Article  PubMed  CAS  Google Scholar 

  • Boone D R, Whitman W B and Rouvierie P 1993 Diversity and taxonomy of methanogens; inMethanogenesis (ed.) J G Ferry (New York, London: Chapman and Hall) pp 35–40

    Google Scholar 

  • Bryant M P, Wolin E A, Wolin M J and Wolfe R S 1967Methanobacillus omelianskii, a symbiotic association of two species;Arch. Microbiol. 59 20–31

    CAS  Google Scholar 

  • Bryant M P, McBride B C and Wolfe R S 1968 Hydrogen oxidizing methane bacteria. I. Cultivation and methanogenesis;J.Bacteriol. 95 1118–1123

    PubMed  CAS  Google Scholar 

  • Bryant M P, Campbell L L, Reddy C A and Crabill M R 1977 Growth ofDesulforvibrio in lactate or ethanol media low in sulphate in association with H2 using methanogenic bacteria;Appl. Environ. Microbiol. 33 1162–1169

    PubMed  CAS  Google Scholar 

  • Cole J 1996 Nitrate reduction to ammonia by enteric bacteria: redundancy, or a strategy for survival during oxygen starvation?;FEMS Microbiol. Lett. 136 1–11

    Article  PubMed  CAS  Google Scholar 

  • Deppenmeier U, Blaut M, Mahlmann A and Gottschalk G 1990 Membrane-bound F420H2-dependent heterodisulfide reductase in methanogenic bacterium strain Go 1 andMethanolobus tindarius;FEBS Lett. 261 199–203

    Article  CAS  Google Scholar 

  • Fernandez-Lopez M, Olivares J and Bedmar E J 1994 Two differentially regulated nitrate reductases required for nitrate-dependent, microaerobic growth ofBradyrhizobium japonicum;Arch. Microbiol. 162 310–315

    Article  Google Scholar 

  • Hrywna Y, Tsoi T V, Maltseva O V, Quensen J F III and Tiedje J M 1999 Construction and characterization of two recombinant bacteria that grow on ortho- and para-substituted chlorobiphenyls;Appl. Environ. Microbiol. 65 2163–2169

    PubMed  CAS  Google Scholar 

  • Hubert C, Shen Y and Voordouw G 1999 Composition of toluenedegrading microbial communities from soil at different concentrations of toluene;Appl. Environ. Microbiol. 65 3064–3070

    PubMed  CAS  Google Scholar 

  • Hungate R E 1969 A roll tube method for cultivation of strict anaerobes; inMethods in microbiology (eds) J R Norris and D W Ribbons (New York: Academic Press) 3B, pp 117–132

    Google Scholar 

  • King E O, Ward M K and Raney DE 1954 Two simple media for the demonstration of pyocyanin and the fluorescein;J. Lab. Clin. M ed. 44 301–307

    CAS  Google Scholar 

  • Krishnan S and Lalitha K 1990 Interactive metabolic regulations during biomethanation ofLeucaena leucocepha;Appl. Biochem. Biotechnol. 26 73–85

    CAS  Google Scholar 

  • Lalitha K, Swaminathan K R and Bai R P 1994a Kinetics of biomethanation of solid tannery waste and the concept of interactive metabolic control;Appl. Biochem. Biotechnol. 47 73–87

    PubMed  CAS  Google Scholar 

  • Lalitha K, Swaminathan K R, Vargheese C M, Shanthi V P and Bai R P 1994b Methanogenesis mediated by methylotrophic mixed culture;Appl. Biochem. Biotechnol. 49 113–134

    CAS  Google Scholar 

  • Lange M and Ahring B K 2001 A comprehensive study into the molecular methodology and molecular biology of methanogenic Archaea;FEMS Microbiol. Rev. 25 553–571

    Article  PubMed  CAS  Google Scholar 

  • Lo H and Reeves R E 1980 Purification and properties of NADPH:flavin oxidoreductase fromEntamoeba histolytica;Mol. Biochem. Parasitol. 2 23–30

    Article  PubMed  CAS  Google Scholar 

  • McInerney M J 1988 Anaerobic degradation of proteins and lipids; inBiology of anaerobic microorganisms (ed.) A J B Zehnder (New York: John Wiley) pp 373–415

    Google Scholar 

  • Meyer J M and Abdallah M A 1978 The fluorescent pigment ofPseudomonas fluorescens: Biosynthesis, purification and physicochemical properties;J. Gen. Microb. 107 319–328

    CAS  Google Scholar 

  • Nicholas D J D and Nason A 1957 Determination of nitrate and nitrite;Methods Enzymol. 3 981–984

    Article  Google Scholar 

  • Palleroni N J 1984Pseudomonadaceae; inBergey’s manual of determinative bacteriology (eds) N R Krieg and J G Holt (Baltimore: Williams and Wilkins) Vol. 1, pp 141–198

    Google Scholar 

  • Reid M F and Fewson C A 1994 Molecular characterization of microbial alcohol dehydrogenases;Crit. Rev. Microbiol. 20 13–56

    PubMed  CAS  Google Scholar 

  • Schink B 1997 Energetics of syntrophic cooperation in methanogenic degradation;Microbiol. Mol. Biol. Rev. 61 262–280

    PubMed  CAS  Google Scholar 

  • Sparling R and Gottschalk G 1990 Molecular hydrogen and energy conservation in methanogenic and acetogenic bacteria; inMicrobiology and biochemistry of strict anaerobes involved in interspecies hydrogen transfer (eds) J P Balaich, M Bruschi and J I Garcia (New York: Plenum Press) pp 3–10

    Google Scholar 

  • Stams A J 1994 Metabolic interactions between anaerobic bacteria in methanogenic environments;Antonie Van Leeuwenhoek 66 271–294

    Article  PubMed  CAS  Google Scholar 

  • Swaminathan K R 1995The concept of interactive metabolic control operative during biomethanation of solid tannery waste and methanol, Ph D thesis, Indian Institute of Technology Madras, Chennai, India

    Google Scholar 

  • Thauer R K 1990 Energy metabolism of methanogenic bacteria;Biochim. Biophys. Acta 1018 256–259

    Article  CAS  Google Scholar 

  • Thauer R K 1998 Biochemistry of methanogenesis: a tribute to Marjory Stephenson;Microbiology 144 2377–2406

    Article  PubMed  CAS  Google Scholar 

  • Thiele J H and Zeikus J G 1988 Control of interspecies electron flow during anaerobic digestion; Significance of formate transfer Vs hydrogen transfer during syntrophic methanogenesis in flocs;Appl. Environ. Microbiol. 54 20–29

    PubMed  CAS  Google Scholar 

  • Vasanthy N, Sankar K, Chandrasekaran P M and Lalitha K 1986 Biomethanation ofLeucaena leucocephala: a potential biomass substrate;Fue 165 1129–1133

    Google Scholar 

  • Wolfaardt G M, Lawrence J R, Robarts R D and Caldwell D E 1994 The role of interactions, sessile growth, and nutrient amendments on the degradative efficiency of a microbial consortium;Can. J. Microbiol. 40 331–340

    Article  PubMed  CAS  Google Scholar 

  • Wolin M J 1982 Hydrogen transfer in microbial communities; inMicrobial interactions and communities (eds) A T Bull and J H Slater (London: Academic Press) Vol. 1, pp 323–356

    Google Scholar 

  • Zehnder A J B, Ingvorsen K and Marti T 1982 Microbiology of methane bacteria; inAnaerobic digestion (eds) D E Hughes, D A Stafford, B I Wheatley, W Baader, G Lettinga, E J Nyns, W Verstraete and R L Wentworth (Amsterdam: Elsevier Biomedical Press) pp 45–68

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rapheal, S.V., Swaminathan, K.R. & Lalitha, K. Metabolic characteristics of an aerobe isolated from a methylotrophic methanogenic enrichment culture. J Biosci 28, 235–242 (2003). https://doi.org/10.1007/BF02706223

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02706223

Keywords

Navigation