Skip to main content
Log in

Thermal adaptation inDrosophila serrata under conditions linked to its southern border: Unexpected patterns from laboratory selection suggest limited evolutionary potential

  • Published:
Journal of Genetics Aims and scope Submit manuscript

Abstract

To investigate the ability ofDrosophila serrata to adapt to thermal conditions over winter at the species southern border, replicate lines from three source locations were held as discrete generations over three years at either 19‡C (40 generations) or temperatures fluctuating between 7‡C and 18δC (20 generations). Populations in the fluctuating environment were maintained either with an adult 0‡C cold shock or without a shock. These conditions were expected to result in temperature-specific directional selection for increased viability and productivity under both temperature regimes, and reduced development time under the fluctuating-temperature regime. Selection responses of all lines were tested under both temperature regimes after controlling for carry-over effects by rearing lines in these environments for two generations. When tested in the 19‡C environment, lines evolving at 19‡C showed a faster development time and a lower productivity relative to the other lines, while cold shock reduced development time and productivity of all lines. When tested in the fluctuating environment, productivity of the 7–18‡C lines selected with a cold shock was relatively lower than that of lines selected without a shock, but this pattern was not observed in the other populations. Viability and body size as measured by wing length were not altered by selection or cold shock, although there were consistent effects of source population on wing length. These results provide little evidence for temperature-specific adaptation inD. serrata —although the lines had diverged for some traits, these changes were not consistent with a priori predictions. In particular, there was no evidence for life-history changes reflecting adaptation to winter conditions at the southern border. The potential forD. serrata to adapt to winter conditions may therefore be limited.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arnold S. J. 1992 Constraints on phenotypic evolution.Am. Nat. 140, S85-S107.

    Article  Google Scholar 

  • Azevedo R. B. R., French V. and Partridge L. 1996 Thermal evolution of egg size inDrosophila melanogaster.Evolution 50, 2338–2345.

    Article  Google Scholar 

  • Baer C. F. and Travis J. 2000 Direct and correlated responses to artificial selection on acute thermal stress tolerance in a livebearing fish.Evolution 54, 238–244.

    PubMed  CAS  Google Scholar 

  • Barton N. H. and Turelli M. 1989 Evolutionary quantitative genetics: how little do we know?Annu. Rev. Genet. 23, 337–370.

    PubMed  CAS  Google Scholar 

  • Blows M. W. 1993 The genetics of central and marginal populations ofDrosophila serrata. 2. Hybrid breakdown in fitness components as a correlated response to selection for desiccation resistance.Evolution 47, 1271–1285.

    Article  Google Scholar 

  • Blows M. W. and Hoffmann A. A. 1993 The genetics of central and marginal populations ofDrosophila serrata. 1. Genetic variation for stress resistance and species borders.Evolution 47, 1255–1270.

    Article  Google Scholar 

  • Blows M. W. and Hoffmann A. A. 1996 Evidence for an association between nonadditive genetic variation and extreme expression of a trait.Am. Nat. 148, 576–587.

    Article  Google Scholar 

  • Brussard P. F. 1984 Geographic patterns and environmental gradients: the central-marginal model inDrosophila revisited.Annu. Rev. Ecol. Syst. 15, 25–64.

    Article  Google Scholar 

  • Bubliy O. A., Riihimaa A., Norry F. M. and Loeschcke V. 2002 Variation in resistance and acclimation to low-temperature stress among three geographical strains ofDrosophila melanogaster.J. Therm. Biol. 27, 337–344.

    Article  Google Scholar 

  • Case T. J. and Taper M. L. 2000 Interspecific competition, environmental gradients, gene flow, and the coevolution of species’ borders.Am. Nat. 155, 583–605.

    Article  PubMed  Google Scholar 

  • Cavicchi S., Guerra D., Natali V., Pezzoli C. and Giorgi G. 1989 Temperature-related divergence in experimental populations ofDrosophila melanogaster. II. Correlation between fitness and body dimensions.J. Evol. Biol. 2, 235–251.

    Article  Google Scholar 

  • Cavicchi S., Gianfranco G., Natali V. and Guerra D. 1991 Temperature-related divergence in experimental populations ofDrosophila melanogaster. III. Fourier and centroid analysis of wing shape and relationship between shape variation and fitness.J. Evol. Biol. 4, 141–159.

    Article  Google Scholar 

  • Cheverud J. M. 1984 Quantitative genetics and developmental constraints on evolution by selection.J. Theor. Biol. 110, 155–171.

    PubMed  CAS  Google Scholar 

  • Cohan F. M. and Graf J.-D. 1985 Latitudinal cline inDrosophila melanogaster for knockdown resistance to ethanol fumes and for rates of response to selection for further resistance.Evolution 39, 278–293.

    Article  CAS  Google Scholar 

  • Crespi B. J. 2000 The evolution of maladaptation.Heredity 84, 623–629.

    Article  PubMed  Google Scholar 

  • Dhondt A. A., Adriaensen F., Matthysen E. and Kempenaers B. 1990 Non-adaptive clutch sizes in tits.Nature 348, 723–725.

    Article  Google Scholar 

  • Foley P. A. and Luckinbill L. S. 2001 The effects of selection for larval behavior on adult life-history features inDrosophila melanogaster.Evolution 55, 2493–2502.

    PubMed  CAS  Google Scholar 

  • Garcia-Ramos G. and Kirkpatrick M. 1997 Genetic models of adaptation and gene flow in peripheral populations.Evolution 51, 21–28.

    Article  Google Scholar 

  • Gibbs A. G., Chippindale A. K. and Rose M. R. 1997 Physiological mechanisms of evolved desiccation resistance inDrosophila melanogaster.J. Exp. Biol. 200, 1821–1832.

    PubMed  CAS  Google Scholar 

  • Gilchrist G. W., Huey R. B. and Partridge L. 1997 Thermal sensitivity ofDrosophila melanogaster-evolutionary responses of adults and eggs to laboratory natural selection at different temperatures.Physiol. Zool. 70, 403–414.

    Article  PubMed  CAS  Google Scholar 

  • Harshman L. G. and Hoffmann A. A. 2000 Laboratory selection experiments using Drosophila: what do they really tell us?Trends Ecol. Evol. 15, 32–36.

    Article  PubMed  Google Scholar 

  • Hercus M. J. and Hoffmann A. A. 1999 Does interspecific hybridization influence evolutionary rates? An experimental study of laboratory adaptation in hybrids betweenDrosophila serrata andDrosophila birchii.Proc. R. Soc. London B266, 2195–2200.

    Article  Google Scholar 

  • Hicks C. R. 1973Fundamental concepts in the design of experiments, 2nd edition. Holt, Rinehart and Winston, New York.

    Google Scholar 

  • Hoffmann A. A. and Blows M. W. 1994 Species borders — ecological and evolutionary perspectives.Trends Ecol. Evol. 9, 223–227.

    Article  Google Scholar 

  • Hoffmann A. A. and Hercus M. J. 2000 Environmental stress as an evolutionary force.Bioscience 50, 217–226.

    Article  Google Scholar 

  • Hoffmann A. A., Sgró C. M. and Lawler S. H. 1995 Ecological population genetics — the interface between genes and the environment.Annu. Rev. Genet. 29, 349–370.

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann A. A., Hallas R., Sinclair C. and Partridge L. 2001 Rapid loss of stress resistance inDrosophila melanogaster under adaptation to laboratory culture.Evolution 55, 436–438.

    PubMed  CAS  Google Scholar 

  • Hoffmann A. A., Hallas R., Dean J. A. and Schiffer M. 2003 Low potential for climatic stress adaptation in a rainforestDrosophila species.Science 301, 100–102.

    Article  PubMed  CAS  Google Scholar 

  • Holt R. D. and Gomulkiewicz R. 1997 How does immigration influence local adaptation — a reexamination of a familiar paradigm.Am. Nat. 149, 563–572.

    Article  Google Scholar 

  • Huey R. B., Partridge L. and Fowler K. 1991 Thermal sensitivity ofDrosophila melanogaster responds rapidly to laboratory natural selection.Evolution 45, 751–756.

    Article  Google Scholar 

  • James A. C. and Partridge L. 1995 Thermal evolution of rate of larval development inDrosophila melanogaster in laboratory and field populations.J. Evol. Biol. 8, 315–330.

    Article  Google Scholar 

  • Jenkins N. L. 1999 Testing species borders hypotheses usingDrosophila serrata. Ph.D. thesis, La Trobe University, Melbourne, Australia.

    Google Scholar 

  • Jenkins N. L. and Hoffmann A. A. 1999 Limits to the southern border ofDrosophila serrata: cold resistance, heritable variation, and trade-offs.Evolution 53, 1823–1834.

    Article  Google Scholar 

  • Jenkins N. L. and Hoffmann A. A. 2000 Variation in morphological traits and trait asymmetry in fieldDrosophila serrata from marginal populations.J. Evol. Biol. 13, 113–130.

    Article  Google Scholar 

  • Jenkins N. L. and Hoffmann A. A. 2001 Distribution ofDrosophila serrata Malloch (Diptera: Drosophilidae) in Australia with particular reference to the southern border.Aust. J. Entomol. 40, 41–48.

    Article  Google Scholar 

  • Jenkins N. L., Sgró C. M. and Hoffmann A. A. 1997 Environmental stress and the expression of genetic variation. InEnvironmental stress, adaptation and evolution (ed. R. Bijlsma and V. Loeschcke), pp. 79–96. BirkhÄuser, Boston.

    Google Scholar 

  • Kennington W. J., Killeen J. R., Goldstein D. B. and Partridge L. 2003 Rapid laboratory evolution of adult wing area inDrosophila melanogaster in response to humidity.Evolution 57, 932–936.

    PubMed  Google Scholar 

  • Kern S., Ackermann M., Stearns S. C. and Kawecki T. J. 2001 Decline in offspring viability as a manifestation of aging inDrosophila melanogaster.Evolution 55, 1822–1831.

    PubMed  CAS  Google Scholar 

  • Kirkpatrick M. and Barton N. H. 1997 Evolution of a species range.Am. Nat. 150, 1–23.

    Article  Google Scholar 

  • Krebs R. A. and Loeschcke V. 1994a Costs and benefits of activation of the heat-shock response inDrosophila melanogaster.Funct. Ecol. 8, 730–737.

    Article  Google Scholar 

  • Krebs R. A. and Loeschcke V. 1994b Effects of exposure to short-term heat stress on fitness components inDrosophila melanogaster.J. Evol. Biol. 7, 39–49.

    Article  Google Scholar 

  • Krebs R. A. and Loeschcke V. 1996 Acclimation and selection for increased resistance to thermal stress inDrosophila buzzatii.Genetics 142, 471–479.

    PubMed  CAS  Google Scholar 

  • Krebs R. A. and Loeschcke V. 1999 A genetic analysis of the relationship between life-history variation and heat-shock tolerance inDrosophila buzzatii.Heredity 83, 46–53.

    Article  PubMed  Google Scholar 

  • Lammi A., Siikamaki P. and Mustajarvi K. 1999 Genetic diversity, population size, and fitness in central and peripheral populations of a rare plantLychnis viscaria.Conserv. Biol. 13, 1069–1078.

    Article  Google Scholar 

  • Lenormand T. 2002 Gene flow and the limits to natural selection.Trends Ecol. Evol. 17, 183–189.

    Article  Google Scholar 

  • Lenski R. E. and Bennett A. F. 1993 Evolutionary response ofEscherichia coli to thermal stress.Am. Nat. 142, S47-S64.

    Article  Google Scholar 

  • Linnen C., Tatar M. and Promislow D. 2001 Cultural artifacts: a comparison of senescence in natural, laboratory-adapted and artificially selected lines ofDrosophila melanogaster.Evol. Ecol. Res. 3, 877–888.

    Google Scholar 

  • Magiafoglou A. and Hoffmann A. A. 2003 Cross-generation effects due to cold exposure inDrosophila serrata.Funct. Ecol. 17, 664–672.

    Article  Google Scholar 

  • Magiafoglou A., Carew M. E. and Hoffmann A. A. 2002 Shifting clinal patterns and microsatellite variation inDrosophila serrata populations: a comparison of populations near the southern border of the species range.J. Evol. Biol. 15, 763–774.

    Article  CAS  Google Scholar 

  • Matos M., Avelar T. and Rose M. R. 2002 Variation in the rate of convergent evolution: adaptation to a laboratory environment inDrosophila subobscura.J. Evol. Biol. 15, 673–682.

    Article  Google Scholar 

  • Mayr E. 1963Animal species and evolution. Harvard University Press, Cambridge.

    Google Scholar 

  • Mockett R. J., Orr W. C., Rahmandar J. J., Sohal B. H. and Sohal R. S. 2001 Antioxidant status and stress resistance in long- and short-lived lines ofDrosophila melanogaster.Exp. Gerontol. 36, 441–463.

    Article  PubMed  CAS  Google Scholar 

  • Partridge L. and Sibly R. 1991 Constraints in the evolution of life histories.Philos. Trans. R. Soc. London B332, 3–13.

    Google Scholar 

  • Partridge L., Barrie B., Fowler K. and French V. 1994a Thermal evolution of pre-adult life history traits inDrosophila melanogaster.J. Evol. Biol. 7, 645–663.

    Article  Google Scholar 

  • Partridge L., Barrie B., Fowler K. and French V. 1994b Evolution and development of body size and cell size inDrosophila melanogaster in response to temperature.Evolution 48, 1269–1276.

    Article  Google Scholar 

  • Partridge L., Barrie B., Barton N. H., Fowler K. and French V. 1995 Rapid laboratory evolution of adult life-history traits inDrosophila melanogaster in response to temperature.Evolution 49, 538–544.

    Article  Google Scholar 

  • Patton Z. J. and Krebs R. A. 2001 The effect of thermal stress on the mating behaviour of threeDrosophila species.Physiol. Biochem. Zool. 74, 783–788.

    Article  PubMed  CAS  Google Scholar 

  • Prasad N. G., Shakarad M., Anitha D., Rajamani M. and Joshi A. 2001 Correlated responses to selection for faster development and early reproduction in Drosophila: the evolution of larval traits.Evolution 55, 1363–1372.

    PubMed  CAS  Google Scholar 

  • Reeve J. P. and Fairbairn D. J. 1999 Change in sexual size dimorphism as a correlated response to selection on fecundity.Heredity 83, 697–706.

    Article  PubMed  Google Scholar 

  • Scheiner S. M. 2002 Selection experiments and the study of phenotypic plasticity.J. Evol. Biol. 15, 889–898.

    Article  Google Scholar 

  • Sgró C. M. and Hoffmann A. A. 1998 Effects of stress combinations on the expression of additive genetic variation for fecundity inDrosophila melanogaster.Genet. Res. 72, 13–18.

    Article  PubMed  Google Scholar 

  • Sgró C. M. and Partridge L. 2001 Laboratory adaptation of life history inDrosophila.Am. Nat. 158, 657–658.

    Article  PubMed  Google Scholar 

  • Sheeba V., Sharma V. K., Shubha K., Chandrashekaran M. K. and Joshi A. 2000 The effect of different light regimes on adult life span inDrosophila melanogaster is partly mediated through reproductive output.J. Biol. Rhythms 15, 380–392.

    Article  PubMed  CAS  Google Scholar 

  • van Klinken R. D. and Walter G. H. 2001 Larval hosts of Australian Drosophilidae (Diptera): A field survey in subtropical and tropical Australia.Aust. J. Entomol. 40, 163–179.

    Article  Google Scholar 

  • Watson M. J. O. and Hoffmann A. A. 1996 Acclimation, crossgeneration effects, and the response to selection for increased cold resistance inDrosophila.Evolution 50, 1182–1192.

    Article  Google Scholar 

  • Zamudio K. R., Huey R. B. and Crill W. D. 1995 Bigger isn’t always better — body size, developmental and parental temperature and male territorial success inDrosophila melanogaster.Anim. Behav. 49, 671–677.

    Google Scholar 

  • Zar J. H. 1996Biostatistical analysis. Prentice-Hall, Upper Saddle River.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ary Hoffmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Magiafoglou, A., Hoffmann, A. Thermal adaptation inDrosophila serrata under conditions linked to its southern border: Unexpected patterns from laboratory selection suggest limited evolutionary potential. J Genet 82, 179–189 (2003). https://doi.org/10.1007/BF02715817

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02715817

Keywords

Navigation