Skip to main content
Log in

Rafting in single crystal nickel-base superalloys — An overview

  • Published:
Sadhana Aims and scope Submit manuscript

Abstract

Currently nickel-base single crystal (SX) superalloys are considered for the manufacture of critical components such as turbine blades, vanes etc., for aircraft engines as well as land-based power generation applications. Microstructure and high temperature mechanical properties are the major factors controlling the performance of SX superalloys. Rafting is an important phenomenon in these alloys which occurs during high temperature creep. It is essential to understand the rafting mechanism, and its characteristics on high temperature properties before considering the advanced applications. In this review article, the thermodynamic driving force for rafting with and without stress is explained. The nature and influence of rafting on creep properties including pre-rafted conditions are discussed. In addition, the effect of stress state on γ/γ′ rafting, kinetics and morphological evolution are discussed with the recent experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Biermann H, Tetzlaff U, Von Grossmann B, Mughrabi H 2000Scr. Mater. 43: 807–812

    Article  Google Scholar 

  • Broomfield R W, Ford D A, Bhangu J K, Thomas M C, Frasier D J, Burkholder P S, Harris K, Erickson G L, Wahl J B 1998J. Eng. Gas Turbines Power 120: 595–608

    Google Scholar 

  • Caron P, Khan T 1983Mater. Sci. Eng. 61: 173–184

    Article  Google Scholar 

  • Carry C, Strudel J L 1978Acta Metall. 26: 859–870

    Article  Google Scholar 

  • Chang J C, Allen S M 1991J. Mater. Res. 6: 1843–1855

    Article  Google Scholar 

  • Chen W, Immarigeon J-P 1998Scr. Mater. 39: 167–174

    Article  Google Scholar 

  • Dlouhy A, Eggeler G 1996Prakt. Metallogr. 33: 629

    Google Scholar 

  • Dlouhy A, Mayr C, Eggeler G 1997Proc. 7th Int. Conf. on Creep and Fracture of Engineering Materials and Science (eds) J Earthman, F A Mohamed (Warrendale, PA: Minerals Met. Mater. Soc.) p. 677

    Google Scholar 

  • Eggeler G, Dlouhy A 1997Acta Metall. Mater. 45: 4251–4262

    Google Scholar 

  • FÄhrmann M, FÄhrmann E, Paris O, Fratzl P, Pollock T M 1996 InSuperalloys (eds) R D Kissingeret al (Warrendale, PA: Minerals, Met. Mater. Soc.) pp 191–200

    Google Scholar 

  • Feller-Kniepmeier M, Link T 1989Metall. Trans. A20: 1233–1238

    Google Scholar 

  • Henderson P J, Mclean M 1983Acta Metall. 31: 1203–1219

    Article  Google Scholar 

  • Henderson P, Berglin L, Jansson C 1999Scr. Metall. Mater. 40: 229–234

    Google Scholar 

  • Ignat M, Buffiere J-Y, Chaix J M 1993Acta Metall. Mater. 41: 855–862

    Article  Google Scholar 

  • Kamaraj M, Serin K, Kolbe M, Eggeler G 2000Proc. 12th Int. conf. on the strength of materials (ICSMA-12), Asilomar, California, USA

    Google Scholar 

  • Kamaraj M, Mayr C, Kolbe M, Eggeler G 1998Scr. Metall. Mater. 38: 589–594

    Google Scholar 

  • Kolbe M, Dlouhy A, Eggeler G 1998Mater. Sci. Eng. A246:133

    Google Scholar 

  • Kolbe M, Kamaraj M, Heitkemper M, Probst-Hein M, Neuking K, Eggeler G 1988Berichtsband der DFG zum Schwerpunktprogramm (Weinheim: Wiley-VCH) pp 384–396

    Google Scholar 

  • Kondo Y, Kitazaki N, Namekata J, Ohi N, Hattori H 1996 InSuperalloys 1996 (eds) R D Kissingeret al (Warrendale, PA: Minerals, Met. Mater. Soc.) pp 297–304

    Google Scholar 

  • Laberge C A, Fratzl P, Lebowitz J L 1997Acta Mater. 45: 3949–3962

    Article  Google Scholar 

  • Leverant G R, Kear B H 1970Metall. Trans. 1: 491–499

    Google Scholar 

  • Lukas P, Cadek J, Sustek V, Kunz L 1996Mater. Sci. Eng. A208: 149–157

    Google Scholar 

  • MacKay R A, Ebert L J 1983Scr. Metall. 17: 1217–1222

    Article  Google Scholar 

  • MacKay R A, Maier R D 1982Metall. Trans. A13: 1747

    Google Scholar 

  • Matan N, Cox D C, Rae M F, Reed R C 1999Acta Mater. 47: 2031–2045

    Article  Google Scholar 

  • Mayr C, Eggeler G, Dlouhy A 1996Mater. Sci. Eng. A207: 51–63

    Google Scholar 

  • Mayr C, 1994 Ph D thesis, Swiss Federal Institute of Technology, Lausanne, Switzerland

    Google Scholar 

  • Mayr C, Eggeler G, Webster G A, Peter G 1995Mater. Sci. Eng. A199: 121–130

    Google Scholar 

  • McLean M 1983Directionally solidified materials for high temperature service (London: The Metals Society)

    Google Scholar 

  • Meetham G W 1981The development of gas turbine materials (London: Applied Science Publishers)

    Google Scholar 

  • Mughrabi H, Schneider W, Sass V, Lang C 199410th Int. Conf. Proc. on Strength of Materials (ed.) Oikawa (Sedai: Japan Inst. Met.) pp 705–708

    Google Scholar 

  • Mughrabi H, Feng H, Biermann H 1995Proc. of the IUTAM Symposium on Micromechanics of Plasticity and damage of Multiphase Materials, France

  • Mughrabi H 1996 InProc. Johannes Weertman Symp. ofTMS, Anaheim, CA (ed.) R J Arsenault

  • Mughrabi H, Ott M, Tetzlaff U 1997Mater. Sci. Eng. A234–236: 434–437

    Google Scholar 

  • Mukherji D, Gabrisch H, Chen W, Fecht H J, Wahi R P 1997Acta Metall. Mater. 45: 3143–3154

    Google Scholar 

  • Nabarro FR N 1996Metall. Trans. A27: 513–529

    Google Scholar 

  • Nabarro F R N 1997Scr. Metall. Mater. 37: 497–501

    Google Scholar 

  • Nabarro F R N, Cress C M, Kotschy P 1996Acta Mater. 44: 3189–3197

    Article  Google Scholar 

  • Nathal M V 1987Metall. Trans. A18: 1961–1970

    Google Scholar 

  • Nathal M V, Ebert L J 1985Metall. Trans. A16: 427–439

    Google Scholar 

  • Nathal M V, Mackay R A 1987Mater. Sci. Eng. 85: 127–138

    Article  Google Scholar 

  • Nathal M V, Mackay R A, Miner R V 1989Metall. Trans A20: 133–141

    Google Scholar 

  • Ohashi T, Hidaka K, Imano S, 1997:Acta Metall. Mater. 45: 1801–1810

    Google Scholar 

  • Paris O, FÄhrmann M, FÄhrmann E, Pollock T M, Fratzl P 1997Acta Mater. 45: 1085–1097

    Article  Google Scholar 

  • Pearson D D, Lemkey F D, Kear B H 1980 InProc. Fourth Int’l Symp on superalloys (eds) J K Tienet al (Metals Park, OH: ASM) pp 513–519

    Google Scholar 

  • Pearson D D, Kear B H, Lemkey F D 1981 InCreep and fracture of engineering materials and structures (eds) B Wilshire, D R J Owens (Swansea, UK: Pineridge) p. 213

    Google Scholar 

  • Peter G, Probst-Hein M, Kolbe M, Neuking K, Eggeler G 1997Mater.-Wiss. Werkstofftech. 28: 457–464

    Article  Google Scholar 

  • Pineau A 1976Acta Metall. 24: 559–564

    Article  Google Scholar 

  • Pollock T, Argon A S 1992Acta Metall. Mater. 40: 1–30

    Article  Google Scholar 

  • Pollock T M, Argon A S 1994Acta Metall. Mater. 42: 1859–1874

    Article  Google Scholar 

  • Royer A, Bastie P, Bellet D 1995Philos. Mag. 72: 669–689

    Article  Google Scholar 

  • Sahm P R, Speidel M O 1974High temperature materials in gas turbines, (London: Elsevier Scientific)

    Google Scholar 

  • Schneider W, Mughrabi H 1993Proc of the 5th Inter Conf on creep and fracture of engineering materials and structures (eds) B Wilshire, R W Evans (London: Institute of Materials) pp 209–220

    Google Scholar 

  • Schneider W, Hammer J, Mugharabi H 1992 InSuperalloys 1992 (eds) S D Antolovichet al (Warrendale, PA: Miner., Met. & Mater. Soc.) pp 589–598

    Google Scholar 

  • Serin K, Eggeler G 2000bPrakt. Metallogr. (to be published)

  • Serin K, Neuser R D, Kamaraj M, Kolbe M, Eggeler G, Heitkemper M 2002aPrakt. Metallogr. (to be published)

  • Shewmon P G 1989Diffusion in solids (Warrendale, PA Miner., Met. & Mater. Soc.)

    Google Scholar 

  • Sims C T, Hagel W C 1972The Superalloys (New York: John Wiley & Sons)

    Google Scholar 

  • Socrate S, Parks D M 1993Acta Metall. Mater. 41: 2185–2201

    Article  Google Scholar 

  • Srinivasan R, Eggeler G, Mills M J 2000Acta Mater. 48: 4867.

    Article  Google Scholar 

  • Svetlov I L, Golovko B A, Epishin A I, Abalakin N P 1992Scr. Metall. 26: 1353–1358

    Article  Google Scholar 

  • Svoboda J, Lukas P 1996Acta Mater. 44: 2557–2565

    Article  Google Scholar 

  • Swalin R W 1967Thermodynamics of solids (New York: John Wiley & Sons)

    Google Scholar 

  • Tian S G, Zhou H H, Zhang J H, Yang H C, Xu Y B, Hu Z Q 2000Mater. Sci. Technol. 16: 451–456

    Google Scholar 

  • Tien J K, Copley S M 1971Metall. Trans. A2: 215–219

    Article  Google Scholar 

  • Tien J K, Copley S M 1971Metall. Trans. A2: 543–553

    Article  Google Scholar 

  • Tien J K, Gamble R P 1972Metall. Trans. A3: 2157–2162

    Article  Google Scholar 

  • Véron M, Brechet Y, Louchet F 1996 InSuperalloys (eds) R D Kissingeret al (Warrendale, PA: Miner., Met. & Mater. Soc), p. 191

    Google Scholar 

  • Véron M, Brechet Y, Louchet F 1996Acta Metall. Mater. 45: 3633–3641

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kamaraj, M. Rafting in single crystal nickel-base superalloys — An overview. Sadhana 28, 115–128 (2003). https://doi.org/10.1007/BF02717129

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02717129

Keywords

Navigation