Skip to main content
Log in

Electron form factors up to fourth order. - I

Электронные форм-факторы с точностью вплоть до четвертого порядка. I

  • Published:
Il Nuovo Cimento A (1965-1970)

Summary

The explicit results of the analytic evaluation of the discontinuities of the electron form factors and of their zero-momentum-transfer values, up to the fourth order of the perturbative expansion of QED in the electric charge, are presented. Asymptotic and threshold behaviours are discussed. The related form of the dispersion relations for the real parts is given.

Riassunto

Si presentano i risultati espliciti del calcolo analitico delle discontinuità dei fattori di forma dell’elettrone e dei loro valori a momento trasferito nullo, sino al quart’ordine dello sviluppo perturbativo dell’elettrodinamica quantica nella carica elettrica. Si discutono i comportamenti asintotici e in soglia. Si dà la corrispondente forma delle relazioni di dispersione per le parti reali.

Реэюме

Предлагаются точные реэультаты аналитического вычисления раэрывов злектронных форм-факторов и их эначений при нулевых передаваемых импульсах с точностью вплоть до четвертого порядка теории воэмушений по злектрическому эаряду в квантовой злектродинамике. Обсуждаются асимптотическое и пороговое поведения. Приводится соответствуюшая форма дисперсионного соотнощения для вешественных частей.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Schwinger:Phys. Rev.,76, 790 (1949); see alsoG. Källén:Handbuch der Physik, Vol.5 (Berlin, 1958), p. 304.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. A. Peterman:Helv. Phys. Acta,30, 407 (1957);C. Sommerfield:Ann. of Phys.,5, 26 (1958). Both these authors present the correct analytic result. A previous incorrect estimate was given byR. Karplus andN. Kroll:Phys. Rev.,77, 536 (1950).P. Smrz andI. Ulehla (Czech. Journ. Phys.,10, 966 (1960)) repeated part of the calculation, providing a further check. The fourth-order magnetic moment was also re-evaluated byM. V. Terent’ev (3) by a method essentially based on dispersion relations, while in all the previous calculations use was made of Feynman-parameter techniques. Actually, dispersion relations are used in the Terent’ev work only to write down suitable multiple integral representations, which are in general manipulated to get the final result, without explicitly evaluating the discontinuities. The problem of infra-red divergences has been further overlooked, and many of the intermediate results are wrong, even if somewhatad hoc compensations make the final result correct. Despite these shortcomings, this reference has been of considerable interest for the present work, as it containsin nuce many of the techniques which were developed and widely used in this paper, in particular the choice of the « natural variable »x, eq. (0.1).

    Google Scholar 

  3. M. V. Terent’ev:Sov. Phys. JETP,16, 444 (1963).

    MathSciNet  ADS  MATH  Google Scholar 

  4. R. Barbieri, J. A. Mignaco andE. Remiddi:Nuovo Cimento,6 A, 21 (1971).R. Barbieri andE. Remiddi:On the analytic computer-assisted evaluation of the discontinuities of the electron form factors at fourth order in QED, inProceedings of the Colloquium on Advanced Computing Methods in Theoretical Physics, Marseille, 21–45 June 1971, Vol.2, p. IV-76. The result is analytic. A first (incorrect) estimate was given byJ. Wesener, R. Bersohn andN. Kroll:Phys. Rev.,91, 1257 (1953). The first (incorrect) analytic evaluation is due toM. F. Soto jr.:Phys. Rev. Lett.,17, 1153 (1966);Phys. Rev. A,2, 734 (1970); the first correct numerical calculation toT. Appelquist andS. J. Brodsky:Phys. Rev. Lett.,24, 562 (1970);Phys. Rev. A,2, 2293 (1970). Partial results are given inR. Barbieri, J. A. Mignaco andE. Remiddi:Lett. Nuovo Cimento,3, 588 (1970) (analytic);B. Lautrup, A. Peterman andE. de Rafael:Phys. Lett.,31 B, 577 (1970) (numeric);A. Peterman:Phys. Lett.,34 B, 507 (1971) (numeric);35 B, 325 (1971) (analytic);J. A. Fox:Phys. Rev. D,5, 492 (1972).

    Article  ADS  Google Scholar 

  5. G. Källén andA. Sabry:Dan. Mat. Fys. Medd.,29, No. 17 (1955).

  6. A. Sabry:Nucl. Phys.,33, 401 (1962).

    Article  MathSciNet  Google Scholar 

  7. R. E. Cutkosky:Journ. Math. Phys.,1, 429 (1960); see alsoM. Veltman:Dispersive calculation of diagrams with arbitrarily many external lines, inProceedings of the Colloquium on Advanced Computing Methods in Theoretical Physics, Marseille, June 21–25, 1971, Vol.2, p. IV-115.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. N. Nielsen:Nova Acta, Vol.90 (Halle, 1909), p. 125. See Appendix A.

    Google Scholar 

  9. M. Veltman: SCHOONSCHIP, CERN preprint, 1967 (unpublished).

  10. R. Barbieri, J. A. Mignaco andE. Remiddi:Nuovo Cimento,11 A, 865 (1972).

    Article  ADS  Google Scholar 

  11. The value forα can be taken fromB. N. Taylor, W. H. Parker andD. N. Langerberg:Rev. Mod. Phys.,41, 375 (1969); they giveα −1 = 137.03608(26).

    Article  ADS  Google Scholar 

  12. M. J. Levine andJ. Wright:Phys. Rev. Lett.,26, 1351 (1971) and references therein for previous works. The error due to numerical integration of the (α/π)3 coefficient is estimated to be around 0.20.

    Article  ADS  Google Scholar 

  13. See,e.g.,G. W. Erikson andD. R. Yennie:Ann. of Phys.,35, 271, 447 (1965).

    Article  ADS  Google Scholar 

  14. The right result to lowest order for the 2S 1/2 level shift is ΔE=(1/2)α 4 m(α/π)·(−(1/3) log (Δɛ/m)−1/8+5/18), where Δɛ is the famous Bethe energy (15). Comparing this formula with eqs. (1.11), (1.12) we see that inm 2 F1/(2)(0) the regularizing massλ is replaced by the Bethe energy and a finite term (5/18) is added.

    Article  ADS  Google Scholar 

  15. H. A. Bethe:Phys. Rev.,72, 339 (1947);H. A. Bethe, L. M. Brown andJ. R. Stehn:Phys. Rev.,77, 370 (1950).

    Article  ADS  MATH  Google Scholar 

  16. R. Mills andN. Kroll:Phys. Rev.,98, 1489 (1955).

    Article  ADS  Google Scholar 

  17. For a recent tabulation of Lamb-shift data (theoretical contributions and experimental results), seeAppelquist andBrodsky (4). Some of the theoretical contributions have been recently improved, and their numerical errors reduced, byG. W. Ericson:Phys. Rev. Lett.,27, 780 (1971).

    Article  ADS  Google Scholar 

  18. R. T. Robiscoe andT. W. Shyn:Phys. Rev. Lett.,24, 599 (1970).

    Article  ADS  Google Scholar 

  19. D. R. Yennie, S. C. Frautschi andH. Suura:Ann. of Phys.,13, 379 (1961).

    Article  ADS  Google Scholar 

  20. G. Källén: inBrandeis University Summer Institute Lectures in Theoretical Physics, 1962 (New York, 1963), p. 210.

  21. R. Jackiw:Ann. of Phys.,48, 292 (1968).

    Article  ADS  Google Scholar 

  22. T. Appelquist andJ. R. Primack:The asymptotic behaviour of form factors in field theory, Harvard University preprint (1971);Phys. Rev. D,1, 1144 (1970);P. M. Fishbane andJ. D. Sullivan:Phys. Rev. D,4, 458 (1971).

  23. See ref. (8). See alsoK. S. Kölbig, J. A. Mignaco andE. Remiddi:B.I.T.,10, 38 (1970). Miscellaneous results are contained in the book byR. Lewin:Dilogarithms and Associated Functions (London, 1958).

    Google Scholar 

  24. See the Appendix of ref. (5).

  25. The first of these equations one finds in the Appendix of ref. (5); the second one could be new in the literature.

  26. K. S. Kölbig: GPLOG, CERN Program Library C323.

  27. J. A. Mignaco andE. Remiddi:Nuovo Cimento,60 A, 519 (1969).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barbieri, R., Mignaco, J.A. & Remiddi, E. Electron form factors up to fourth order. - I. Nuov Cim A 11, 824–864 (1972). https://doi.org/10.1007/BF02728545

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02728545

Navigation