Skip to main content
Log in

Exceptional realizations of the lorentz group: Supersymmetries and leptons

Исключительные реалиэации группы Лорентца: Суперсимметрии и пептоны

  • Published:
Il Nuovo Cimento A (1965-1970)

Summary

Exceptional realizations of the Lorentz group are given via the exceptional Jordan algebra of Jordan, von Neumann and Wigner. The exceptionalSL 2,C multiplets generate an intrinsically nonassociative algebra and have built in non-Abelian charge space properties. Considering these multiplets as the basis of a superspace it is shown how to give realizations of exceptional supersymmetry groups which incorporate important charge-space groups in a nontrivial way and which are different from the usual Clifford algebraic supersymmetry groups. Possible applications to the leptonic world are indicated.

Riassunto

Si danno realizzazioni eccezionali del gruppo di Lorentz attraverso l’algebra di Jordan eccezionale di Jordan, von Neumann e Wigner. I multiplettiSL 2,C eccezionali generano un’algebra intrinsecamente non associativa ed hanno incluse proprietà dello spazio delle cariche non abeliane. Considerando questi multipletti come base di un superspazio si mostra come dare realizzazioni di gruppi di supersimmetria eccezionali che incorporano in modo non banale importanti gruppi dello spazio delle cariche e che sono diversi dagli usuali gruppi di supersimmetria dell’algebra di Clifford. Si indicano possibili applicazioni al mondo leptonico.

Реэюме

Приводятся исключительные реалиэации группы Лорентца с исполь-эованием алгебры Джордана, фон Неймана и Вигнера. Исключительные мульти-плеты SL2, с генерируют внутренне неассоциативную алгебру и обладают свойстваминеабелева пространства эаряда. Рассматривая зти мультиплеты, как основу длясуперпростра нства, покаэывается, как можно получить реалиэации исключительныхгрупп суперсимметрии нетривиальным обраэом и, которые отличаются от обычныхалгебраич еских групп суперсимметрии Клиффорда. Обсуждаются воэможные приме-нения к лептонному миру.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  1. J. Wess andB. Zumino:Nucl. Phys.,70 B, 39 (1974).

    Article  MathSciNet  ADS  Google Scholar 

  2. P. Ramond:Phys. Rev. D,3, 2415 (1971);A. Neveu andJ. H. Schwarz:Nucl. Phys.,31 B, 86 (1971);Y. Aharonov, A. Casher andL. Susskind:Phys. Lett.,35 B, 512 (1971);J. L Gervais andB. Sakita:Nucl. Phys.,34 B, 633 (1971).

    Article  MathSciNet  ADS  Google Scholar 

  3. A. Salam andJ. Strathdfe: Trieste preprint IC/74/11.

  4. A. Salam andJ. Strathdee: Trieste preprint IC/74/16.

  5. A. Salam andJ. Strathdee: Trieste preprint IC/74/42.

  6. S. Ferrara, J. Wess andB. Zumino: CERN preprint TH-1863 (1974).

  7. A. Salam andJ. Strathdee: Trieste preprint IC/74/36.

  8. S. Ferrara andB. Zumino: CERN preprint TH-1866.

  9. A. Salam andJ. Strathdee: Trieste preprint IC/74/80.

  10. E. P. Wigner:Phys. Rev.,51, 105 (1937).

    ADS  Google Scholar 

  11. F. Gürsey andL. A. Radicati:Phys. Rev. Lett.,13, 173 (1964).

    Article  MathSciNet  ADS  Google Scholar 

  12. B. Sakita:Phys. Rev.,136, B 1756 (1964).

    Google Scholar 

  13. M. Günaydin andF. Gürsey:Lett. Nuovo Cimento,6, 401 (1973).

    Article  Google Scholar 

  14. M. Günaydin andF. Gürsey:Journ. Math. Phys.,14, 1651 (1973).

    Article  MATH  Google Scholar 

  15. M. Günaydin: Ph. D. Thesis, Yale University (1973), unpublished.

  16. M. Günaydin andF. Gürsey:Phys. Rev. D,9, 3387 (1974).

    Article  ADS  Google Scholar 

  17. F. Gürsey:Johns Hopkins University Workshop on Current Problems in High-Energy Particle Theory (Baltimore, Md., 1974), p. 15.

  18. F. Gürsey:Algebraic methods and quark structure, Yale preprint (1975), to be published in theProceedings of the Kyoto Conference on Mathematical Problems in Theoretical Physics, Jan. 23–29, 1975.

  19. The literature on the principle of triality is quite extensive. Here we list only a few:J. Tits:Acad. Roy. Belg. Bull. Cl. Sci., (5)44, 332 (1958);C. Chevalley andR. D. Schafer:Proc. Nat. Acad. Sci.,36, 137 (1950);C. Chevalley:Algebraic Theory of Spinors, Chap. 4 (New York, N. Y., 1954). See als ref. (25), whose notation we follow.

    MathSciNet  MATH  Google Scholar 

  20. I. Yokota:Journ. Fac. Sci. Shinshu Univ.,3, 35 (1968).

    MathSciNet  Google Scholar 

  21. P. Jordan, J. von Neumann andE. P. Wigner:Ann. Math.,35, 29 (1934).

    Article  Google Scholar 

  22. See the review paper ofH. Freudenthal:Adv. Math.,1, 145 (1964).

    Article  MathSciNet  MATH  Google Scholar 

  23. N. Jacobson:Structure and Representations of Jordan Algebras, Amer. Math. Soc. Coll. Publ., Vol.39 (1968).

  24. M. Koecher:Inventiones Math.,3, 136 (1967).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. TheSU 6 decomposition ofE 6 was given in a different setting byC. Chevalley:Compt. Rend.,232, 1991 (1951).

    MathSciNet  Google Scholar 

  26. ThisSU 2-group was designated asSU 2 I in ref. (14).

    Article  Google Scholar 

  27. SeeS. Weinberg:Phys. Rev. Lett.,19, 1264 (1967);A. Salam:Proceedings of the VIII Nobel Symposium (New York, N. Y., 1968).

    Article  ADS  Google Scholar 

  28. F. Gürsey andG. Feinberg:Phys. Rev.,128, 378 (1962).

    Article  ADS  MATH  Google Scholar 

  29. Here one may speculate and try to interpret some of the neutral vector fields of the adjoint representation as the fields corresponding to the narrow resonances recently discovered at Brookhaven and SLAC (see ref. (39)). However if this interpretation is correct, then one would expect a large family of such resonances which must fit into the adjoint representation of the supersymmetry group.

    Article  ADS  Google Scholar 

  30. J. J. Aubert, U. Becker, J. P. Biggs, J. Burger, M. Chen, G. Everhart, P. Goldhagen, J. Leong, T. McCorriston, T. G. Rhoades, M. Rohde, S. C. C. Ting, S. L. Wu andY. Y. Lee:Phys. Rev. Lett.,33, 1404 (1974);J.-E. Augustin, A. M. Boyarski, M. Breidenbach, F. Bulos, J. T. Dakin, G. J. Feldman, G. E. Fischer, D. Fryberger, G. Hanson, B. Jean-Marie, R. R. Larsen, V. Lüth, H. L. Lynch, D. Lyon, C. C. Morehouse, J. M. Paterson, M. L. Perl, B. Richter, P. Rapidis, R. F. Schwitters, W. M. Tanenbaum, F. Vannucci, G. S. Abrams, D. Briggs, W. Chinowsky, C. E. Friedberg, G. Goldhaber, R. J. Hollebeek, J. A. Kadyk, B. Lulu, F. Pierre, G. H. Trilling, J. S. Whitaker, J. Wiss andJ. E. Zipse:Phys. Rev. Lett.,33, 1406 (1974).

    Article  ADS  Google Scholar 

  31. The literature on the exceptional Jordan algebra is very extensive. For details and further references we refer the reader to ref. (28) and to the bookR. D. Schafer:An Introduction to Nonassociative Algebras (New York, N. Y., 1966). Our notation follows closely the ref. (25,27).

  32. J. Tits:Nederl. Akad. Wetensch. Proc., Ser. A,65, 530 (1962). For a simplified exposition, see ref. (40).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Günaydin, M. Exceptional realizations of the lorentz group: Supersymmetries and leptons. Nuov Cim A 29, 467–503 (1975). https://doi.org/10.1007/BF02734524

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02734524

Navigation