Skip to main content
Log in

Rotations in computational solid mechanics

  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Summary

A survey of variational principles, which form the basis for computational methods in both continuum mechanics and multi-rigid body dynamics is presented: all of them have the distinguishing feature of making an explicit use of the finite rotation tensor.

A coherent unified treatment is therefore given, ranging from finite elasticity to incremental updated Lagrangean formulations that are suitable for accomodating mechanical nonlinearities of an almost general type, to time-finite elements for dynamic analyses. Selected numerical examples are provided to show the performances of computational techniques relying on these formulations.

Throughout the paper, an attempt is made to keep the mathematical abstraction to a minimum, and to retain conceptual clarity at the expense of brevity. It is hoped that the article is self-contained and easily readable by nonspecialists.

While a part of the article rediscusses some previously published work, many parts of it deal with new results, documented here for the first time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Argyris, J. (1982), “An excursion into large rotations”,Computer Methods in Applied Mechanics and Engineering,32, pp. 85–155.

    Article  MATH  MathSciNet  Google Scholar 

  • Atluri, S.N. (1973), “On the hybrid stress finite element model in incremental analysis of large deflection problems”,International Journal of Solids and Structures,9, pp. 1188–91.

    Article  Google Scholar 

  • Atluri, S.N. and Murakawa, H. (1977),On hybrid finite element models in nonlinear solid mechanics, inFinite Elements in Nonlinear Mechanics (Edited by P.G. Berganet al.), Vol 1, Tapir: Trondheim, pp. 3–40.

    Google Scholar 

  • Atluri, S.N. (1979), “On rate principles for finite strain analysis of elastic and inelastic nonlinear solids”, inRecent Research on Mechanical Behaviour of Solids (Edited by the Committee on Recent Research on Mechanical Behaviour of Solids), University of Tokyo Press: Tokyo, pp. 79–107.

    Google Scholar 

  • Atluri, S.N. (1980a), “On some new general and complementary energy theorems for the rate problems in finite strain, classical elastoplasticity”,Journal of Structural Mechanics,8, pp. 61–92.

    MathSciNet  Google Scholar 

  • Atluri, S.N. (1980b), “Rate Complementary Energy Principles, Finite Strain Plasticity Problems, and Finite Elements”, inVariational Methods in the Mechanics of Solids, ed. S. Nemat-Nasser, Pergamon Press, pp. 363–367.

  • Atluri, S.N. and Murakawa, H. (1981), “New General & Complementary Energy Theorems, Finite Strain Rate-Sensitive Inelasticity and Finite Elements: Some Computational Studies”, inNonlinear Finite Element Analysis in Structural Mechanics, eds. W. Wunderlich, E. Stein and K.J. Bathe, Springer-Verlag, pp. 28–48.

  • Atluri, S.N. (1984a), “Alternate stress and conjugate strain measures, and mixed variational formulations involving rigid rotations, for computational analyses of finitely deformed solids, with application to plates and shells—I Theory”,Computers & Structures,18, pp. 98–116.

    Article  MathSciNet  Google Scholar 

  • Atluri, S.N. (1984b), “On constitutive relations at finite strain: hypo-elasticity and elasto-plasticity with isotropic or kinematic hardening”,Computer Methods in Applied Mechanics and Engineering,43, pp. 137–171.

    Article  MATH  Google Scholar 

  • Atluri, S.N. and Reissner, E. (1989), “On the formulation of variational theorems involving volume constraints”,Computational Mechanics,5, pp. 337–344.

    Article  MATH  Google Scholar 

  • Atluri, S.N. (1992), Unpublished Research Notes, Computational Modeling Center, Georgia Institute of Technology.

  • Biot, M. (1965),Mechanics of Incremental Deformations, J. Wiley & Sons, Inc: New York.

    Google Scholar 

  • Borri, M., Mello, F. and Atluri, S.N. (1990a), “Variational approaches for dynamics and time-finite-elements: numerical studies”,Computational Mechanics,7, pp. 49–76.

    Article  MATH  Google Scholar 

  • Borri, M., Mello, F. and Atluri, S.N. (1990b), “Time finite element methods for large rotational dynamics of multibody systems”,Computers & Structures,37, pp. 231–240.

    Article  MATH  Google Scholar 

  • Borri, M., Mello, F. and Atluri, S.N. (1991), “Primal and mixed forms of Hamilton’s principle for constrained rigid body systems: numerical studies”,Computational Mechanics,7, pp. 205–217.

    Article  MATH  Google Scholar 

  • Bowen, R.W. and Wang, C.C. (1976),Introduction to Vectors and Tensors, Plenum Press: New York.

    MATH  Google Scholar 

  • Cardona, A. and Geradin, M. (1988), “A beam finite element non-linear theory with finite rotations”,International Journal for Numerical Methods in Engineering,26, pp. 2403–2438.

    Article  MATH  MathSciNet  Google Scholar 

  • Cazzani, A. and Atluri, S.N. (1992), “Four-noded mixed finite elements, using unsymmetric stresses, for linear analysis of membranes”,computational Mechanics,11, pp. 229–251.

    Article  MathSciNet  Google Scholar 

  • Cheng, H. and Gupta, K. C. (1989), “An Historical Note on Finite Rotations,”ASME Journal of Applied Mechanics,56, pp. 139–145.

    Article  MathSciNet  Google Scholar 

  • Fraeijs de Veubeke, B. (1972), “A new variational principle for finite elastic displacement”,International Journal of Engineering Science,10, pp. 745–763.

    Article  MathSciNet  MATH  Google Scholar 

  • Fukuchi, N. and Atluri, S.N. (1981),Finite deformation analysis of shells: a complementary energyhybrid approach in Nonlinear Finite Element Analysis of Plates and Shells (edited by T. J. R. Hughes et al.), AMD Vol. 48, ASME: New York, pp. 233–248.

    Google Scholar 

  • Hermann, L. R. (1965), “Elasticity equations for incompressible and nearly incompressible materials by a variational theorem”,AIAA Journal,3, pp. 1896–1900.

    Google Scholar 

  • Hill, R. (1967), “Eigen-Modal Deformations in Elastic-Plastic Continua”,Journal of Mechanics and Physics of Solids,15, pp. 371–386.

    Article  Google Scholar 

  • Hill, R. (1968), “On constitutive inequalities for simple materials—I”,Journal of Mechanics and Physics of Solids,16, pp. 229–242.

    Article  MATH  Google Scholar 

  • Hughes, T. J. R. and Brezzi, F. (1989), “On drilling degrees of freedom”,Computer Methods in Applied Mechanics and Engineering,72, pp. 105–121.

    Article  MATH  MathSciNet  Google Scholar 

  • Iura, M. and Atluri, S. N. (1988), “Dynamic analysis of finitely stretched and rotated threedimensional space-curved beams”,Computers & Structures,29, pp. 875–889.

    Article  MATH  Google Scholar 

  • Iura, M. and Atluri, S. N. (1989), “On a Consistent Theory, and Variational Formulation, of Finitely Stretched and Rotated 3-D Space-Curved Beams”,Computational Mechanics,4, no. 1, pp. 73–88.

    Google Scholar 

  • Iura, M. and Atluri, S. N. (1992), “Formulation of a membrane finite element with drilling degrees of freedom”,Computational Mechanics,9, pp. 417–428.

    Article  MATH  Google Scholar 

  • Kondoh, K. and Atluri, S. N. (1985a), “Influence of Local Buckling on Global Instability: Simplified Large Deformation, Post-Buckling Analysis of Plane Trusses”,Computers Structures,24, No. 4, pp. 613–626.

    Article  Google Scholar 

  • Kondoh, K and Atluri, S. N. (1985b), “A Simplified Finite Element Method for Large Deformation, Post-Buckling Analysis of Large Frame Structures, Using Explicitly Derived Tangent Stiffness Matrices”,Int. Jnl. of Num. Meth. in Eng.,23, No. 1, pp. 69–90.

    MathSciNet  Google Scholar 

  • Kondoh, K., Tanaka, K. and Atluri, S. N. (1986), “An Explicit Expression for the Tangent-Stiffness of a Finitely Deformed 3-D Beam and Its Use in the Analysis of Space Frames”,Computers & Structures,24, pp. 253–271

    Article  MATH  Google Scholar 

  • Kondoh, K. and Atluri, S. N. (1987), “Large Deformation Elasto-Plastic Analysis of Frames Under Non-Conservative Loading, Using Explicity Derived tangent Stiffnesses Based on Assumed Stresses”,Computational Mechanics,2, No. 1, pp.1–25.

    Article  MATH  Google Scholar 

  • Love, A. E. H. (1927),A Treatise on the Mathematical Theory of Elasticity, reprint (1944) of IV edition, Dover: New York.

    MATH  Google Scholar 

  • Lur’e, A. I. (1961),Analytical Mechanics (in Russian), Nauka: Moscow.

    Google Scholar 

  • Lur’e, A. I. (1980),Nonlinear Theory of Elasticity (in Russian), Nauka: Moskow; (English translation North-Holland: New York, 1990).

    MATH  Google Scholar 

  • Malvern, L. (1969),Introduction to the Mechanics of a Continuous Medium, Prentice-Hall: Englewood Cliffs.

    Google Scholar 

  • Murakawa, H. (1978),Incremental Hybrid finite element Methods for Finite Deformation Problems (with Special Emphasis on Complementary Energy Principle), Ph.D. Thesis, Georgia Institute of Technology: Atlanta.

    Google Scholar 

  • Murakawa, H. and Atluri, S. N. (1978), “Finite elasticity solutions using hybrid finite elements based on a complementary energy principle”,ASME Journal of Applied Mechanics,45, pp. 539–547.

    MATH  Google Scholar 

  • Murakawa, H. and Atluri, S. N. (1979), “Finite elasticity solutions using hybrid finite elements based on a complementary energy principle. Part 2: incompressible materials,”,ASME Journal of Applied Mechanics,46, pp. 71–77.

    MATH  Google Scholar 

  • Murakawa, H. and Atluri, S. N. (1979), “Finite Element Solutions of Finite-Strain Elastic-Plastic Problems, Based on a Complementary Rate Principle”,Advances in Computer Methods for Partial Differential Equations, pp. 53–60.

  • Murakawa, H., Reed, K. W., Rubinstein, R. and Atluri, S. N. (1981), “Stability Analysis of Structures via a New Complementary Energy Approach”,Computers & Structures,13, pp. 11–18.

    Article  MATH  MathSciNet  Google Scholar 

  • Ogden, R. W. (1984),Non linear elastic deformations, Ellis Horwood: Chichester.

    Google Scholar 

  • Pian, T. H. H. (1964), “Derivation of element stiffness matrices by assumed stress distributions,”AIAA Journal,2, pp. 1333–1336.

    Article  Google Scholar 

  • Pietraszkiewicz, W. (1979),Finite Rotations and Lagrangean Description in the Non-linear Theory of Shells, Polish Scientific Publishers: Warszawa.

    MATH  Google Scholar 

  • Pietraszkiewicz, W. and Badur, J. (1983), “Finite rotations in the description of continuum deformation”,International Journal of Engineering Science,9, pp. 1097–1115.

    Article  MathSciNet  Google Scholar 

  • Punch, E. F. and Atluri, S. N., (1984), “Development and testing of stable, invariant, isoparametric curvilinear 2- and 3-D hybrid stress elements”,Computer Methods in Applied Mechanics and Engineering,47, pp. 331–356.

    Article  MATH  Google Scholar 

  • Punch, E. F. and Atluri, S. N. (1986), “Large Displacement Analysis of Plates by a Stress-Based Finite Element Approach”,Computers & Structures,24, pp. 107–118.

    Article  MATH  Google Scholar 

  • Reed, K. W. and Atluri, S. N. (1983), “On the generalization of certain rate-type constitutive equations for very large strains”, inProceedings of the International Conference on Constitutive Laws for Engineering Materials: Theory and Application, University of Arizona: Tucson, pp. 77–88.

    Google Scholar 

  • Reed, K. W. and Atluri, S. N. (1983a), “Analysis of Large Quasistatic Deformations of Inelastic Bodies by a New Hybrid-Stress Finite Element Algorithm”,Computer Methods in Applied Mechanics & Engineering,39, pp. 245–295.

    Article  MATH  MathSciNet  Google Scholar 

  • Reed, K. W. and Atluri, S. N. (1983b), “Analysis of Large Quasistatic Deformations of Inelastic Bodies by a New Hybrid-Stress Finite Element Algorithm: Applications”,Computer Methods in Applied Mechanics & Engineering,40, pp. 171–198.

    Article  MATH  MathSciNet  Google Scholar 

  • Reed, K. W. and Atluri, S. N. (1984), “Hybrid stress finite elements for large deformations of inelastic solids”,Computers & Structures,19, pp. 175–182.

    Article  MATH  Google Scholar 

  • Reissner, E. (1965), “A note on variational principles in elasticity”,International Journal of Solids and Structures,1, pp. 93–95.

    Article  Google Scholar 

  • Rooney, J. (1977), “A survey of representations of spatial rotation about a fixed point”,Environment and Planning B,4, pp. 185–210.

    Article  Google Scholar 

  • Rubinstein, R. and Atluri, S. N. (1983), “Objectivity of incremental constitutive relations over finite time steps in computational finite deformation analyses”,Computer Methods in Applied Mechanics and Engineering,36, pp. 277–290.

    Article  MATH  MathSciNet  Google Scholar 

  • Seki, W. (1994),Analysis of Strain Localization in hyperelastic Materials, Using Assumed Stress Hybrid Elements, Ph.D. Thesis, Georgia Institute of Technology: Atlanta.

    Google Scholar 

  • Seki, W. and Atluri, S. N. (1994), “Analysis of strain localization in strain-softening hyperelastic materials, using assumed stress hybrid elements”,Computational Mechanics,14, No. 6, pp. 549–585.

    Article  MATH  MathSciNet  Google Scholar 

  • Shi, G. and Atluri, S. N. (1988), “Elasto-Plastic Large Deformation Analysis of Space Frames: A Plastic Hinge and Stress-Based Explicit Derivation of Tangent Stiffnesses”,Int. Jnl. of Num. Meth. in Engg,26, pp. 586–615.

    Google Scholar 

  • Shi, G. and Atluri, S. N. (1989), “Static & Dynamic Analysis of Space Frames with Nonlinear Flexible Connections”,Int. Jnl. of Num. Meth. in Engg,28, pp. 2635–2650.

    Article  MATH  Google Scholar 

  • Stuelpnagel, J. (1964), “On the parametrization of the three-dimensional rotation group”,SIAM Review,6, pp. 422–430.

    Article  MATH  MathSciNet  Google Scholar 

  • Tanaka, K., Kondoh, K. and Atluri, S. N. (1985), “Instability Analysis of Space Trusses Using Exact Tangent-Stiffness Matrices”,Finite Elements in Analysis and Design,2, no. 4, pp. 291–311.

    Article  Google Scholar 

  • Truesdell, C. and Noll, W. (1965),The Nonlinear Field Theories of Mechanics inEncyclopedia of Physics (edited by S. Flügge), Vol. III/3, Springer-Verlag: Berlin.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Atluri, S.N., Cazzani, A. Rotations in computational solid mechanics. ARCO 2, 49–138 (1995). https://doi.org/10.1007/BF02736189

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02736189

Keywords

Navigation