Skip to main content
Log in

A new front updating solution applied to some engineering problems

  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Summary

An automatic mesh generation dealing with domains of an arbitrary shape could be realized by an advancing front method. The mesh generator based on this method creates triangle elements inside a domain starting with the polygonal (polyhedral in 3D) discretisation of its border. In this paper an original algorithm for the front updating procedures as a part of the mesh generator is presented. The proposed algorithm provides an efficient mesh generation procedure. It has been verified on the various domains with complex geometry and with nonuniform distribution of edge nodes such as the discretisation of the switched reluctance motor and power cable configuration, respectively. The related finite element calculations are carried out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Poljak, B. Jajac and N. Kovac (2000), “Time-domain Hallen integral equation approach to a lightning channel modeling”,EMC Europe 2000, 4th European Symposium on Electromagnetic Compatibility, Brugge, Belgium, September.

  2. D. Poljak (1995), “New numerical approach in analysis of thin wire radiating over lossy half-space”,Int. J. Numer. Meth. Eng.,38, 3803–3816.

    Article  MATH  Google Scholar 

  3. D. Poljak (1998), “Finite element integral equation modelling of a thin wire loop antenna”,Comm. Numer. Meth. Eng.,14, 347–354.

    Article  MATH  Google Scholar 

  4. D. Poljak (1998), “Transient response of resistevely loaded straight thin wire in half space configuration”,Journ. Electromagnetic Waves and Applications,12, 775–787.

    MATH  Google Scholar 

  5. D. Poljak and V. Roje (1998), “Time domain modelling of electromagnetic field coupling to transmission lines”,Proc. 1998 IEEE EMC Symposium, Denver, USA, 1010–1013, August.

  6. N. Kovac, B. Jajac and D. Poljak (2000), “Domain optimization in FEM modelling of power cable heat transfer”,Heat Transfer 2000, Sixth International Conference on Advanced Computational Methods in Heat Transfer, Madrid, Spain, June.

  7. S. Gotovac (1994), “Geschalteter Reluktanzmotor für Positionantriebe”, Dissertation Fakultät Elektrotechnik der Technische Universität Berlin.

  8. N. Kovac, B. Jajac and D. Poljak (1999), “Discretisation model of the SRM”,10th DAAM International Symposium, Vienna University of Technology, Vienna, Austria, October.

  9. P.L. George (1991), “Automatic mesh generation”,Applications to Finite Element Methods, Wiley, New York.

    MATH  Google Scholar 

  10. W.J. Gordon and C.A. Hall (1973), “Construction of curvilinear coordinate system and applications to mesh generation”,Int. J. Numer. Meth. Eng.,7, 461–477.

    Article  MATH  MathSciNet  Google Scholar 

  11. M.A. Yerri and M.S. Shepard (1984), “Automatic 3D mesh generation by the modified-octree technic”,Int. J. Numer. Meth. Eng.,20, 1965–1990.

    Article  Google Scholar 

  12. A. Ecer, J.T. Spyropoulos and J.D. Maul (1985), “A three dimensional block-structured finite element grid generation scheme”,AIAA Journal,23, 1483–1490.

    MATH  MathSciNet  Google Scholar 

  13. S.H. Lo (1989), “Delaunay triangulation of non-convex planar domains”,Int. J. Numer. Meth. Eng.,28, 2695–2707.

    Article  MATH  MathSciNet  Google Scholar 

  14. W.J. Schroeder and M.S. Shepard (1988), “Geometry-based fully automatic mesh generation and Delaunay triangulation”,Int. J. Numer. Meth. Eng.,26, 2503–2515.

    Article  MATH  Google Scholar 

  15. P.L. George and F. Hermeline (1992), “Delaunay’s mesh of a convex polyhendron in dimensiond. Application to arbitrary polyhedra”,Int. J. Numer. Meth. Eng.,33, 975–995.

    Article  MATH  MathSciNet  Google Scholar 

  16. D.L. Marcum and N.P. Weatherill (1994), “A procedure for efficient generation of solution adapted unstructured grids”,Comput. Methods Appl. Mech. Eng.,127, 259–268.

    Article  Google Scholar 

  17. P.L. George and E. Seveno (1994), “The advancing front mesh generation method revisited”,Int. J. Numer. Meth. Eng.,37, 3605–3619.

    Article  MATH  MathSciNet  Google Scholar 

  18. S.H. Lo (1985), “A new mesh generation scheme for arbitrary planar domains”,Int. J. Numer. Meth. Eng.,21, 1403–1426.

    Article  MATH  Google Scholar 

  19. H. Jin and N.E. Wiberg (1990), “Two-dimensional mesh generation, adaptive remeshing and refinement”,Int. J. Numer. Meth. Eng.,29, 1501–1526.

    Article  Google Scholar 

  20. J. Peraire, J. Piero, L. Formaggia, K. Morgan and O.C. Zienkiewicz, “Finite element Euler computations in three dimensions”,Int. J. Numer. Meth. Eng.,26, 2135–2159.

  21. H. Jin and R.I. Tanner (1993), “Generation of unstructured tetrahedral meshes by advancing front technique”,Int. J. Numer. Meth. Eng.,36, 1805–1823.

    Article  MATH  Google Scholar 

  22. P. Moller and P. Hansbo (1985), “On advancing front mesh generation in three dimensions”,Int. J. Numer. Meth. Eng.,38, 3551–3569.

    Article  MathSciNet  Google Scholar 

  23. R. Löhner (1996), “Extensions and improvements of the advancing front grid generation technique”,Comm. Numer. Meth. Eng.,12, 683–702.

    Article  MATH  Google Scholar 

  24. C.T. Chan and K. Anastasion (1997), “An automatic tetrahedral mesh generation scheme by the advancing front method”,Comm. Numer. Meth. Eng.,13, 33–46.

    Article  MATH  Google Scholar 

  25. R. Löhner and E. Oñate (1998), “An advancing front point generation technique”,Comm. Numer. Meth. Eng.,14, 1097–1108.

    Article  MATH  Google Scholar 

  26. S.J. Owen, M.L. Staten, S.A. Canann and S. Saigal (1999), “Q-Morph: An indirect approach to advancing front quad meshing”,Int. J. Numer. Meth. Eng.,9, 1317–1340.

    Article  Google Scholar 

  27. S.J. Owen and S. Saigal (2000), “H-Morph: An indirect approach to advancing front hex meshing”,Int. J. Numer. Meth. Eng.,1, 289–312.

    Article  Google Scholar 

  28. R. Löhner (2001), “A parallel advancing front grid generation scheme”,Int. J. Numer. Meth. Eng.,51, 663–678.

    Article  MATH  Google Scholar 

  29. S.H. Lo (1991), “Automatic mesh generation and adaptation using contours”,Int. J. Numer. Meth. Eng.,31, 689–707.

    Article  MATH  Google Scholar 

  30. J. Fang, I.H. Parpia and S.R. Kennon (1993), “Sweepline algorithm for unstructured grid generation on two-dimensional non-convex domains”,Int. J. Numer. Meth. Eng.,36, 2761–2778.

    Article  MATH  MathSciNet  Google Scholar 

  31. J.Z. Zhu, O.C. Zienkiewicz, E. Hinton and J. Wu (1991), “A new approach to the development of automatic quadrilateral mesh generation”,Int. J. Numer. Meth. Eng.,32, 849–866.

    Article  MATH  Google Scholar 

  32. W.H. Frey and D.A. Field (1991), “Mesh relaxation; A new technique for improving triangulations”,Int. J. Numer. Meth. Eng.,31, 1121–1133.

    Article  MATH  MathSciNet  Google Scholar 

  33. P. Hansbo (1995), “Generalized Laplacian smoothing of unstructured grids”,Comm. Numer. Meth. Eng.,11, 455–464.

    Article  MATH  Google Scholar 

  34. J.C. Cavendish (1974), “Automatic triangulations of arbitrary planar domains for the finite element method”,Int. J. Numer. Meth. Eng.,8, 679–696.

    Article  MATH  Google Scholar 

  35. J.C. Cavendish, D.A. Field and W.H. Frey (1985), “An approach to automatic three-dimensional finite element mesh generation”,Int. J. Numer. Meth. Eng.,21, 329–347.

    Article  MATH  Google Scholar 

  36. M. Stiebler and R. Li (1992), “Calculation of Magnetic Field of a Switched Reluctance Motor using Microcomputer”,ETEP,2, No.2, 97–101.

    Google Scholar 

  37. G.E. Dawson, A.R. Eastham and J. Mizia (1987), “Switched Reluctance Motor Torque Characteristics: Finite Element Analysis and Test Results”,IEEE Trans. on Industry Applications,23, No.3, 532–537.

    Google Scholar 

  38. T.J.E. Miller (1993),Switched Reluctance Motors and Their Control, Magna Physics Publishing and Clarendon Press, Oxford.

    Google Scholar 

  39. M. Moallem and C.M. Ong (1990), “Predicting the Torque of a Switched Reluctance Machine from its Finite Element Field Solution”,IEEE Trans. on Energy Conversion,5, No.4, 733–739.

    Article  Google Scholar 

  40. M. Moallem and C.M. Ong (1991), “Predicting the Steady-State Performance of a Switched Reluctance Machine”,IEEE Trans. on Industry Application,27, No.6, 1087–1097.

    Article  Google Scholar 

  41. M. Stiebler and S. Gotovac (1993), “A Switched Reluctance Servo Drive”,5th European Conference on Power Electronics and Applications, Brighton,5, 436–441, September.

    Google Scholar 

  42. C.C. Hwang (1997), “Calculation of Thermal Fields of Underground Cable Systems with Consideration of Structural Steels Constructed in a Duct Bank”,IEE Proc. Gener. Transm. Distrib.,144, No.6, 541–545.

    Article  Google Scholar 

  43. M.A. El-Kady (1984), “Calculation of the Sensitivity of Power Cable Ampacity to Variations of Design and Environmental Parameters”,IEEE Trans. on Power Apparatus and Systems,103, No.8, 2043–2050.

    Article  Google Scholar 

  44. J.K. Mitchell and O.N. Abdel-Hadi (1979), “Temperature Distribution around Buried Cable”,IEEE Trans. on Power Apparatus and Systems,98, No.4, 1158–1166.

    Article  Google Scholar 

  45. N. Flatabo (1973), “Transient Heat Conduction Problems in Power Cables Solved by Finite Element Method”,IEEE Trans. on Power Apparatus and Systems,92, 56–63.

    Article  Google Scholar 

  46. M.A. Hanna, A.Y. Chikhani and M.M.A. Salama (1993), “Thermal analysis of Power Cables in Multy-Layered Soil. Part 1: Theoretical Model”,IEEE Trans. on Power Delivery,8, No. 3, 761–771.

    Article  Google Scholar 

  47. M.A. Hanna, A.Y. Chikhani and M.M.A. Salama (1993), “Thermal analysis of Power Cables in Multy-Layered Soil. Part 2: Practical Considerations”,IEEE Trans. on Power Delivery,8, No.3, 772–778.

    Article  Google Scholar 

  48. M.A. Hanna, A.Y. Chikhani and M.M.A. Salama (1994), “Thermal analysis of Power Cables in Multy-Layered Soil. Part 3: Case of Two Cables in a Trench”,IEEE Trans. on Power Delivery,9, No.1, 572–579.

    Article  Google Scholar 

  49. M.A. Hanna, A.Y. Chikhani and M.M.A. Salama (1998), “Thermal analysis of Power Cables in a Trench in Multy-Layered Soil”,IEEE Trans. on Power Delivery,13, No.2, 304–309.

    Article  Google Scholar 

  50. M.A. Kellow (1981), “A Numerical Procedure for the Calculation of The Temperature Rise and Ampacity of Underground Cables”,IEEE Trans. on Power Apparatus and Systems,100, No.7, 3322–3330.

    Article  Google Scholar 

  51. G.J. Anders, A.K.T. Napieralski and W. Zamojski (1998), “Calculation of Internal Thermal Resistance and Ampacity of 3-Core Unscreened Cables with Fillers”,IEEE Trans. on Power Delivery,13, No.3, 699–705.

    Article  Google Scholar 

  52. M.A. El-Kady, J. Motlis, G.A. Anders and D.J. Horrocks (1988), “Modified Values for Geometric Factor of External Thermal Resistance of Cables in Duct Banks”,IEEE Trans. on Power Delivery,3, No.4, 1303–1309.

    Article  Google Scholar 

  53. G.J. Anders, M. Chaaban, N. Bedard and R.W.D. Ganton (1987), “New Approach to Ampacity Evaluation of Cables in Ducts Using Finite Element Technique”,IEEE Trans. on Power Delivery,2, No.4, 969–975.

    Article  Google Scholar 

  54. W.Z. Black and Sang-il Park (1983), “Emergency Ampacities of Direct Buried Three Pfase Underground Cable Systems”,IEEE Trans. on Power Apparatus and Systems,102, No.7, 2124–2132.

    Article  Google Scholar 

  55. B. Jajac and D. Poljak (1995), “Utjecaj kabelske posteljice na odvodenje topline kod energetskog kabela (I dio: Matematicki model)”,Elektrotehnika,38.

  56. B. Jajac and D. Poljak (1995), “Utjecaj kabelske posteljice na odvodenje topline kod energetskog kabela (II dio:Rubni uvjeti i rezultati proracuna)”,Elektrotehnika,38.

  57. S. Milun, T. Kilic, O. Bego and G. Petrovic (1999), “Protokol o ispitivanju geotermickih i geoelektrickih znacajki tla na trasi kabelske 110 kV mree Splita”, Split.

  58. G. Gela and J.J. Dai (1988), “Calculation of thermal fields of underground cables using the boundary element method”,IEEE Transactions on Power Delivery,3, No.4, October.

  59. J.A. Williams, D. Parmar and M.W. Conroy (1993), “Controlled Backfill Optimization to Achieve High Ampacities on Transmission Cables”,IEEE Transactions on Power Delivery,9, No.1, 544–550, October.

    Article  Google Scholar 

  60. J.H. Neher and M.H. McGrath (1957), “Calculation of the Temperature Rise and Load Capability of Cable Systems”,AIEE Trans., 752–772, October.

  61. C.A. Bauer and R.J. Nease (1958), “A Study of the Superposition of Heat Fields and the Kennely Formula as Applied to Underground Cable Systems”,AIEE Trans., 1330–1337, February.

  62. J.V. Schmill (1960), “Mathematical Solution to the Problem of the Control of the Thermal Environment of Buried Cables”,AIEE Trans., 175–185, June.

  63. E. Tarasiewicz, M.A. El-Kady and G.J. Anders (1987), “Generalized Coefficients of External Thermal Resistance for Ampacity Evaluation of Underground Multiple Cable Systems”,IEEE Trans. on Power Delivery,2, No.1, 15–20.

    Google Scholar 

  64. M.A. El-Kady and D.J. Horrocks (1985), “Extended Values for Geometric Factor of External Thermal Resistance of Cables in Duct Banks”,IEEE Trans. on Power Apparatus and Systems,PAS-104, No.8.

  65. M. Kellow (1981), “Experimental Investigation of the Ampacity of Distribution Cables in a Duct Bank with and without Forced Cooling”,IEEE Trans. on Power Apparatus and Systems,PAS-100, No.7.

  66. M.A. El-Cady, H. Radhakrishna, D.J. Horrocks and R. Ganton (1984), “A Probabilistic Approach to Power Cable Thermal Analysis and Ampacity Calculation”IEEE Trans. on Power Apparatus and Systems,PAS-103, No.9.

  67. I. Gizdic, N. Kovac, D. Poljak and B. Jajac (1999), “Modeliranje prijenosa topline kod podzemnih kabela metodom konacnih elemenata”,Elektrika,2, Studeni-Prosinac.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kovač, N., Gotovac, S. & Poljak, D. A new front updating solution applied to some engineering problems. ARCO 9, 43–75 (2002). https://doi.org/10.1007/BF02736232

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02736232

Keywords

Navigation