Skip to main content
Log in

Gene delivery to rat enteric neurons using herpes simplex virus-based vectors

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Neurons of the enteric (gut) nervous system can be cultured in vitro and readily survive transplantation into the brain making close connections with host neurons. As such, they could potentially be used to deliver therapeutic gene products to the brain after transduction with appropriate genes in culture. Here the authors report the first example of gene delivery to such cultured neurons using herpes simplex virus based vectors. They show that viruses lacking the immediate early gene encoding ICP27 (which are unable to replicate lytically) can efficiently deliver a marker gene to enteric neurons without producing extensive cellular damage. In contrast, viruses lacking only the viral neurovirulence factor encoded by ICP34.5 are inefficient in gene delivery, and produce extensive cellular damage, although they cannot replicate lytically in enteric neurons. A virus lacking both ICP27 and ICP34.5, however, produces less cellular damage than one lacking only ICP27, and is as efficient in gene transfer, whereas inactivation of VMW65 reduces toxicity further. The identification of this virus as a safe and efficient gene delivery vector for enteric neurons paves the way for the eventual delivery of therapeutic genes and subsequent transplantation of engineered neurons into the CNS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ace C. I., McKee T. A., Ryan M., Cameron J. M., and Preston C. M. (1989) Construction and characterization of a herpes simplex virus type I mutant unable to transduce immediate-early gene expression.J. Virol. 63, 2260–2269.

    PubMed  CAS  Google Scholar 

  • Balan P., et al. (1994) An analysis of thein vitro andin vivo phenotypes of mutants of herpes simplex virus type 1 lacking glycoproteins of gC, gE, gI or the putative gJ.J. Gen. Virol. 75, 1245–1258.

    PubMed  CAS  Google Scholar 

  • Bannerman P. G. C., Mirsky R., and Jessen K. R. (1987) Analysis of enteric neurones, glia and their interactions using explant cultures of the myenteric plexus.Dev. Neurosci. 9, 201–227.

    PubMed  CAS  Google Scholar 

  • Brown S. M., Harland J., Maclean A. R., Podlech J., and Barklie Clements J. (1994) Cell type and cell state determine differentialin vitro growth of non-neurovirulent ICP34. 5 negative herpes simplex virus types 1 and 2.J. Gen. Virol. 75, 2367–2377.

    PubMed  CAS  Google Scholar 

  • Chou J. and Roizman B. (1992) The y134. 5 gene of herpes simplex virus 1 precludes neuroblastoma cells from triggering total shut off of protein synthesis characteristic of programmed cell death in neuronal cells.Proc. Natl. Acad. Sci. USA 89, 3266–3270.

    Article  PubMed  CAS  Google Scholar 

  • Coffin R. S., Howard M. K., Cumming D. V. E., Dollery C. M., McEwan J., Yellon D. M., Marber M. S., Maclean A. R., Brown S. M., and Latchman D. S. (1996a) Gene delivery to cardiac cellsin vitro andin vivo using herpes simplex virus vectors.Gene Therapy 3, 560–566.

    PubMed  CAS  Google Scholar 

  • Coffin R. S., Maclean A. R., Latchman D. S., and Brown S. M. (1996b) Safe Delivery of a trans-gene to the mouse central or peripheral nervous system using HSV1 ICP34. 5 deletion mutant vectors.Gene Therapy 3, 886–891.

    PubMed  CAS  Google Scholar 

  • Dobson A. T., Margolis T. P., Sedarati F., Stevens J. G., and Feldman L. T. (1990) A latent nonpathogenic HSV-1 derived vector stably expresses β galactosidase in mouse neurons.Neuron 5, 353–360.

    Article  PubMed  CAS  Google Scholar 

  • During M. J., Naegele J. R., O’Malley K. L., and Geller A. I. (1994) Long-term behavioural recovery in parkinsonian rats by an HSV vector expressing tyrosine hydroxylase.Science 266, 1399–1403.

    Article  PubMed  CAS  Google Scholar 

  • Fukuda J., Kurata T., Yamamoto A., and Yamaguchi K. (1983) Morphological and physiological studies on cultured nerve cells from guinea pigs infected with herpes simplex virusin vivo.Brain Res. 262, 79–89.

    Article  PubMed  CAS  Google Scholar 

  • Gage F. H., Wolff J. A., Rosenberg M. B., Xu L., Yee J.-K., Schults C., and Friedman T. (1987) Grafting genetically modified cells to the brain: possibilities for the future.Neuroscience 23, 795–807.

    Article  PubMed  CAS  Google Scholar 

  • Hardwicke M. A., Vaughn P. J., Sekulovich R. E., O’Conner R., and Sandri-Goldin R. M. (1989) The regions important for the activator and repressor functions of herpes simplex virus type-1 alpha protein ICP27 map to the c-terminal half of the molecule.J. Virol. 63, 4590–4602.

    PubMed  CAS  Google Scholar 

  • Horellou P., Vigne E., Castel M. N., Barneoud P., Colin P., Perricaudet M., Delare P., and Mallet J. (1994) Direct intracerebral gene transfer of an adenoviral vector expressing tyrosine hydroxylase in a rat model of Parkinson’s disease.NeuroReport 6, 49–53.

    Article  PubMed  CAS  Google Scholar 

  • Jessen K. R. and Burnstock G. (1982) The enteric nervous system in tissue culture: a new mammalian model for the study of complex nervous networks.Trends Autonomic Pharmacol. 2, 95–115.

    Google Scholar 

  • Jessen K. R., Saffrey M. J., Baluk P., Hanani M., and Burnstock G. (1983) The enteric nervous system in tissue culture III. Studies on neuronal survival and the retention of biochemical and morphological differentiation.Brain Res. 262, 49–62.

    Article  PubMed  CAS  Google Scholar 

  • Kaplitt M. G., Leone P., Samulski R. J., Xiao X., Pfaff D. W., O’Malley K. L., and During M. J. (1994) Long-term gene expression and phenotypic correction using adeno-associated virus vectors in the mammalian brain.Nature Genet. 8, 148–154.

    Article  PubMed  CAS  Google Scholar 

  • Latchman D. S. (1990) Molecular biology of Herpes simplex virus latency.J. Exper. Pathol. 71, 133–141.

    CAS  Google Scholar 

  • Latchman D. S. (1994) Herpes simplex virus vectors for gene therapy.Mol. Biotechnol. 2, 179–195.

    PubMed  CAS  Google Scholar 

  • Latchman D. S. (1995)Genetic Manipulation of the Nervous System. Academic, New York.

    Google Scholar 

  • Lillycrop K. A., Dent C. L., Wheatley S. C., Beech M. N., Ninkina N. N., Wood J. N., and Latchman D. S. (1991) The octamer binding protein Oct-2 represses HSV immediate early genes in cell lines derived from latently infectable sensory neurons.Neuron 7, 381–390.

    Article  PubMed  CAS  Google Scholar 

  • Maclean A. R., Fareed M. U., Robertson L., Harland J., and Brown S. M. (1991) Herpes Simplex Virus type 1 deletion variants 1714 and 1716 pinpoint.J. Gen. Virol 72, 631–639.

    Article  PubMed  CAS  Google Scholar 

  • Macpherson I. and Stoker M. (1962) Polyoma transformation of hamster cell clones—an investigation of the genetic factors affecting cell competence.Virology 16, 147–151.

    Article  PubMed  CAS  Google Scholar 

  • Miller A. G., Adam M. A., and Miller A. D. (1990) Gene transfer by retrovirus vectors occurs only in cells that are actively replicating at the time of infection.Mol. Cell. Biol. 10, 4239–4242.

    PubMed  CAS  Google Scholar 

  • O’Hare P. and Goding C. R. (1988) Herpes Simplex virus regulatory elements and the immunoglobulin octamer domain bind a common factor and are both targets for virion transactivation.Cell 52, 435–445.

    Article  PubMed  CAS  Google Scholar 

  • Olsen L. C., Buescher E. L., Artenstein M. S., and Parteman P. D. (1967) Herpes virus infections of the human central nervous system.New Engl. J. Med. 277, 1271–1277.

    Article  Google Scholar 

  • Roizman B. and Sears A. E. (1987) An inquiry into the mechanisms of herpes simplex virus latency.Ann. Rev. Microbiol. 41, 543–571.

    Article  CAS  Google Scholar 

  • Rosenberg M. B., Friedmann T., Robertson R. C., Tuszynski M., Wolff J. A., Breakfield X. O., and Gage F. H. (1988) Grafting genetically modified cells to the damaged brain: restorative effects of NGF expression.Science 242, 1575–1578.

    Article  PubMed  CAS  Google Scholar 

  • Sacks W. R., Greene C. C., Aschmann D. P., and Schaffer P. A. (1985) Herpes simplex virus type 1 ICP27 is an essential regulatory protein.J. Virol. 55, 796–805.

    PubMed  CAS  Google Scholar 

  • Saffrey M. J., Bailey D. J., and Burnstock G. (1991) Growth of enteric neurones from isolated myenteric ganglia in dissociated cell culture.Cell Tissue Res. 265, 527–534.

    Article  PubMed  CAS  Google Scholar 

  • Tew E. M. M., Anderson P. N., and Burnstock G. (1992) Implantation of the myenteric plexus into the corpus striatum of adult rats: survival of the neurons and glia and interactions with host brain.Restorative Neurol. Neurosci. 4, 311–321.

    Google Scholar 

  • Tew E. M. M., Anderson P. N., Saffrey M. J., and Burnstock G. (1994) Transplantation of the postnatal rat myenteric plexus into the adult rat corpus striatum: an electron microscopic study.Exp. Neurol. 129, 120–129.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Keith Howard, M., Coffin, R.S., Maclean, A.R. et al. Gene delivery to rat enteric neurons using herpes simplex virus-based vectors. J Mol Neurosci 9, 65–74 (1997). https://doi.org/10.1007/BF02736851

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02736851

Index Entries

Navigation