Skip to main content
Log in

On the generalized Lagrangian for general relativity and some of its implications.—I

Об обобщенном Лагранжиане для общей теории относительности и некоторые следствия этого Лагранжиана.—I

  • Published:
Il Nuovo Cimento B (1971-1996)

Summary

The most general scalar Lagrangian leading to Einstein’s field equations (without the cosmological term) is given byL =L 0+(−G 1/2. denotes the usual scalar density of Einstein’s theory whileF andK are certain invariants quadratic in the components of the curvature tensor. The contribution toL resulting froma=0 and considered in this not eis conformally invariant. The implications of conformal mapping for the Larangian formalism are discussed. Due to the vanishing of the Lagrange derivative of (−g)1/2 K, this density may be expressed as the divergence of a 4-component quantity. A general expression for this quantity is determined without use of special co-ordinates. New identities for the Riemann curvature tensor or Weyl’s curvature tensor are derived which are bilinear in the components of such tensors and their duals. Finally, a contribution to the energymomentum complex is obtained containing terms quadratic in the second derivative of the metric.

Riassunto

Il lagrangiano scalare più generale che porta ad equazioni di compo di Einstein (prive di termine cosmologico) è dato daL =L 0+(−G 1/2(aF +bK).L 0 rappresenta l’usuale densità scalare della teoria di Einstein, mentreF eK sono certi invarianti quadratici nelle componenti del tensore di curvatura. Il contributo aL risultante daa=0 e qui preso in considerazione è conformemente invariante. Si discutono le implicazioni di una mappa conforme rispetto al formalismo di Lagrange. Si può esprimere questa densità come la divergenza di una quantità a 4 componenti grazie all’annullarsi della derivata lagrangiana di (−g)1/2 K. Si determina un’espressione generale per questa quantità senza far uso di coordinate speciali. Si deducono nuove identità per i tensori di curvatura di Riemann e di Weyl che sono bilineari nelle componenti di tali tensori e dei loro duali. Infine, si ottiene un contributo al complesso energia-impulso contente termini quadratici nella derivata seconda della metrica.

Резюме

Наиболее общий скалярный Лагранжиан, приводящий к полевым уравнениям Эйнштейна (без космологического члена) записывается в видеL =L 0+(−G 1/2(aF +bK).L 0 обозначает обычную скаляную плотность в теории Эйнштейна, тогда какF иK представляют собой некоторые инварианты, квадратичные по компонентам тензора кривизны. Вклад вL, возникающий отa=0 и рассматриваемый в этой работе, является конформно инвариантным. Обсуждаются следствия конформного отображения для лагранжианнного формализма. Вследствие обращающейся в нуль производной Лагранза (−G 1/2 K, эта плотостя мощжет быть выражена как дивергенция 4-компонентной величины. Выводится общее выражение для этой величины без использования специальных координат. Полычаются новые тождества для тензора кривизы Римна или для тензора кривизны Вейля, которые являются билинейными но компонентам таких тензороВ и их дуальных тензоров. Наконец, вычисляется вклад в энергию-импульс, который содержит члены, квадратичные по второй произвой производной метрики.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Lanczos:Ann. Math.,39, 842 (1938).

    Article  MathSciNet  Google Scholar 

  2. D. Lovelock:Arch. Rat. Mech. Anal.,33, 54 (1969);Journ. Math. Phys.,12, 498 (1971);13, 874 (1972).

    Article  MathSciNet  MATH  Google Scholar 

  3. M. Kohler andH. Goenner:On identities for the curvature tensor derived from a generalized Lagrangian for Einstein’s theory of gravitation, II, preprint University of Göttingen (1972).

  4. H. A. Buchdahl:Quart. Journ. Math. Oxford,19, 150 (1948).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. H. Rund:Abhandl. Math. Sem. Hamburg,29, 243 (1966).

    Article  MathSciNet  MATH  Google Scholar 

  6. J. A. Schouten:Ricci-Calculus, II edition (Berlin, 1954), p. 306.

  7. H. A. Buchdahl:Journ. Math. Phys.,1, 537 (1960).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. H. A. Buchdahl:Journ. Austral. Math. Soc.,6, 402, 424 (1966).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Traduzione a cura della Redazione.

Переведено редакцией.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goenner, H., Kohler, M. On the generalized Lagrangian for general relativity and some of its implications.—I. Nuov Cim B 22, 79–86 (1974). https://doi.org/10.1007/BF02737461

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02737461

Navigation