Skip to main content
Log in

Structure and function of metal chelators produced by plants

The case for organic acids, amino acids, phytin, and metallothioneins

  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Plants produce a range of ligands for cadmium (Cd), copper (Cu), nickel (Ni), and zinc (Zn). Cd- and Zn-citrate complexes are prevalent in leaves, even though malate is more abundant. In the xylem sap moving from roots to leaves, citrate and histidine are the principal ligands for Cu, Ni, and Zn. Phosphorus-rich globular bodies in young roots are probably Zn-phytate. Metallothioneins (MTs) are cysteine (Cys)-rich ligands. Plants produce class II MTs (MT-IIs) which differ from the archetypal mammalian MT-I in the location and number of Cys. The Ec protein from wheat embryos has Cys in three domains, binds Zn, and disappears with seedling development. The first 59 amino acids have been sequenced for the protein. Fifty-eight genes for MT-IIs, from a range of plants and tissues, predict proteins with Cys in two domains. Most of the predicted proteins have not been isolated, and their metal binding is poorly documented. Three protein bands, corresponding to six MT genes, have been isolated fromArabidopsis, and the amino acids sequenced for nine fragments. The MT-IIIs are atypical, nontranslationally synthesized polypeptides with variously repeating γ-glutamylcysteine units. Of the five families known, those with carboxy-terminal glycine are the most widespread among plants, algae, and certain yeasts. A heterogeneous grouping of these molecules form Cd-binding complexes with tetrahedral coordination and a Cd-sulfur interatomic distance of 2.52 Å. One complex is cytosolic, the dominant one is vacuolar. Together, they can bind a large proportion of cellular Cd; other ligands may also function. Little is known about the counterpart situation for Cu and Zn.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nieboer, E. and Richardson, D. H. S. (1980) Replacement of the nondescript term ‘heavy metals’ by a biologically and chemically significant classification of metal ions.Environ. Pollut. Ser. B 1, 3–26.

    CAS  Google Scholar 

  2. Antonovics, J., Bradshaw, A. D., and Turner, R. G. (1971) Heavy metal tolerance in plants.Adv. Ecol. Res. 7, 1–85.

    Google Scholar 

  3. Ernst, W. H. O., Verkleij, J. A. C., and Schat, H. (1992) Metal tolerance in plants.Acta Bot. Neerl. 41, 229–248.

    CAS  Google Scholar 

  4. Macnair, M. R. (1993) Genetics of metal tolerance in vascular plants.New Phytol. 124, 541–559.

    CAS  Google Scholar 

  5. Wagner, G. J. (1993) Accumulation of cadmium in crop plants and its consequences to human health.Adv. Agron. 51, 173–212.

    CAS  Google Scholar 

  6. Florijn, P. J. and Van Beusichem, M. L. (1993) Uptake and dristribution of cadmium in maize inbred lines.Plant Soil 150, 25–32.

    CAS  Google Scholar 

  7. Salt, D. E., Blaylock, M., Kumar, N. P. B. A., Dushenkov, V., Ensley, B. D., Chet, I., and Raskin, I. (1995) Phytoremediation, a novel strategy for the removal of toxic metals from the environment using plants.Biotechnology 13, 468–474.

    PubMed  CAS  Google Scholar 

  8. Rauser, W. E. (1987) Compartmental efflux analysis and removal of extracellular cadmium from roots.Plant Physiol. 85, 62–65.

    PubMed  CAS  Google Scholar 

  9. Pellet, D. M., Papernik, L. A., and Kochian, L. V. (1996) Multiple aluminum-resistance mechanisms in wheat.Plant Physiol. 112, 591–597.

    PubMed  CAS  Google Scholar 

  10. Jorge, R. A. and Arruda, P. (1997) Aluminum-induced organic acids exudation by roots of an aluminum-tolerant tropical maize.Phytochem.45, 675–681.

    CAS  Google Scholar 

  11. Archambault, D. J., Zhang, G., and Taylor, G. J. (1996) Accumulation of Al in root mucilage of an Al-resistant and an Al-sensitive cultivar of wheat.Plant Physiol. 172, 1471–1478.

    Google Scholar 

  12. Meharg, A. A. (1993) The role of the plasma membrane in metal tolerance in angiosperms.Physiol. Plant. 88, 191–198.

    CAS  Google Scholar 

  13. Davies, K. L., Davies, M. S., and Francis, D. (1992) Zn-induced vacuolation in root meristematic cells of cereals.Ann. Bot. 69, 21–24.

    CAS  Google Scholar 

  14. Macklon, A. E. S. (1975) Cortical cell fluxes and transport to the stele in excised root segments ofAllium cepa L. I. Potassium, sodium and chloride.Planta 122, 109–130.

    CAS  Google Scholar 

  15. Ernst, W. H. O. (1975) Physiology of heavy metal resistance in plants. International Conference Heavy Metals in the Environment, Toronto, Vol.II Part 1. pp. 121–136.

    Google Scholar 

  16. Mathys, W. (1977) The role of malate, oxalate, and mustard oil glucosides in the evolution of zinc-resistance in herbage plants.Physiol. Plant. 40, 130–136.

    CAS  Google Scholar 

  17. Thurman, D. A. and Rankin, J. L. (1982) The role of organic acids in zinc tolerance inDeschampsia caespitosa.New Phytol. 91, 629–635.

    CAS  Google Scholar 

  18. Godbold, D. L., Horst, W. J., Collins, J. C., Thurman, D. A., and Marschner, H. (1984) Accumulation of zinc and organic acids in roots of zinc tolerant and non-tolerant ecotypes ofDeschampsia caespitosa.J. Plant Physiol. 116, 59–69.

    CAS  Google Scholar 

  19. Wang, J., Evangelou, B. P., Nielsen, M. T., and Wagner, G. J. (1991) Computer-simulated evaluation of possible mechanisms for quenching heavy metal ion activity in plant vacuoles. I. Cadmium.Plant Physiol. 97, 1154–1160.

    PubMed  CAS  Google Scholar 

  20. Wang, J., Evangelou, B. P., Nielsen, M. T., and Wagner, G. J. (1992) Computer-simulated evaluation of possible mechanisms for sequenstering ion activity in plant vacuoles. II. Zinc.Plant Physiol. 99, 621–626.

    PubMed  CAS  Google Scholar 

  21. Krotz, R. M., Evangelou, B. P., and Wagner, G. J. (1989) Relationship between cadmium, zinc, Cd-peptide, and organic acid in tobacco suspension cells.Plant Physiol. 91, 780–787.

    PubMed  CAS  Google Scholar 

  22. Parker, D. R., Chaney, R. L., and Norvel, W. A. (1995) Chemical equilibrium models: applications to plant nutrition research, In: Chemical equilibrium and reaction models (Loeppert, R. H, Schwab, A. P., and Goldberg, S., eds.). Soil Science Society of America Special Publication Number 42, WI. pp. 163–200.

  23. Vögeli-Lange, R. and Wagner, G. J. (1990) Subcellular localization of cadmium and cadmium-binding peptides in tobacco leaves. Implication of a transport function for cadmium-binding peptides.Plant Physiol. 92, 1086–1093.

    PubMed  Google Scholar 

  24. Mullins, G. L., Sommers, L. E., and Housley, T. L. (1986) Metal speciation in xylem and phloem exudates.Plant Soil 96, 377–391.

    CAS  Google Scholar 

  25. Salt, D. E., Prince, R. C., Pickering, I. J., and Raskin, I. (1995) Mechanisms of cadmium mobility and accumulation in Indian mustard.Plant Physiol. 109, 1427–1433.

    PubMed  CAS  Google Scholar 

  26. Lee, J., Reeves, R. D., Brooks, R. R., and Jaffré, T. (1978) The relation between nickel and citric acid in some nickel-accumulating plants.Phytochemistry 17, 1033–1035.

    CAS  Google Scholar 

  27. Lee, J., Reeves, R. D., Brooks, R. R., and Jaffré, T. (1977) Isolation and identification of a citrato-complex of nickel from nickel-accumulating plants.Phytochemistry 16, 1503–1505.

    CAS  Google Scholar 

  28. Kersten, W. J., Brooks, R. R., Reeves, R. D., and Jaffré, T. (1980) Nature of nickel complexes inPsychotria douarrei and other nickel-accumulating plants.Phytochemistry 19, 1963–1965.

    CAS  Google Scholar 

  29. Sanger, S., Kneer, R., Wanner, G., Cosson, J.-P., Deus-Neumann, B., and Zenk, M. H. (1998) Hyperaccumulation, complexation and distribution of nickel inSebertia acuminata.Phytochemistry 47, 339–347.

    Google Scholar 

  30. Krämer, U., Cotter-Howells, J. D., Charnock, J. M., Baker, A. J. M., and Smith, J. A. C. (1996) Free histidine as a metal chelator in plants that accumulate nickel.Nature 379, 635–638.

    Google Scholar 

  31. Lott, J. N. A., Greenwood, J. S., and Batten, G. D. (1995) Mechanisms and regulation of mineral nutrient storage during seed development, inSeed Development and Germination (Kigel, J. and Gallili, G., eds.), Marcel Dekker, New York, pp. 215–235.

    Google Scholar 

  32. Lott, J. N. A., Goodchild, D. J., and Craig, S. (1984) Studies of mineral reserves in pea (Pisum sativum) cotyledons using low-water-content procedures.Aust. J. Plant Physiol. 11, 459–469.

    CAS  Google Scholar 

  33. Collier, H. B. (1981) A Zn2+ binding constituent of fababeans.Biochim. Biophys. Acta 675, 427–429.

    PubMed  CAS  Google Scholar 

  34. Van Steveninck, R. F. M., Van Steveninck, M. E., Fernando, D. R., Horst, W. J., and Marschner, H. (1987) Deposition of zinc phytate in globular bodies in roots ofDeschampsia caespitosa ecotypes: a detoxification mechanism?J. Plant Physiol. 131, 247–257.

    Google Scholar 

  35. Van Steveninck, R. F. M., Van Steveninck, M. E., Wells, A. J., and Fernando, D. R. (1990) Zinc tolerance and the binding of zinc as zinc phytate inLemna minor. X-ray microanalytical evidence.J. Plant Physiol. 137, 140–146.

    Google Scholar 

  36. Van Steveninck, R. F. M., Van Steveninck, M. E., Fernando, D. R., Edwards, L. B., and Wells, A. J. (1990) Electron probe X-ray microanalytical evidence for two distinct mechanisms of Zn and Cd in a Zn tolerant clone ofLemna minor.C.R. Acad. Sci. Paris 310, 671–678.

    Google Scholar 

  37. Van Steveninck, R. F. M., Babare, A., Fernando, D. R., and Van Steveninck, M. E. (1993) The binding of zinc in root cells of crop plants by phytic acid.Plant Soil 155/156, 525–528.

    Google Scholar 

  38. Van Steveninck, R. F. M., Babare, A., Fernando, D. R., and Van Steveninck, M. E. (1994) The binding of Zn, but not cadmium, by phytic acid in roots of crop plants.Plant Soil 167, 157–164.

    Google Scholar 

  39. Hamer, D. H. (1986) Metallothionein.Annu. Rev. Biochem. 55, 913–951.

    PubMed  CAS  Google Scholar 

  40. Suzuki, K. T., Imura, N., and Kimura, M., eds. (1993)Metallothionein III: Biological Roles and Medical Applications, Birkhäuser Verlag, Basel.

    Google Scholar 

  41. Riordan, J. F. and Vallee, B. L., eds. (1991)Methods in Enzymology Metallobiochemistry Part B Metallothionein and Related Molecules, Academic Press, New York, 205: pp. 1–681.

    Google Scholar 

  42. Rauser, W. E. (1990) Phytochelatins.Annu. Rev. Biochem. 59, 61–86.

    PubMed  CAS  Google Scholar 

  43. Steffens, J. C. (1990) The heavy metal-binding peptides of plants.Annu. Rev. Plant Physiol. Plant Mol. Biol. 41, 553–575.

    CAS  Google Scholar 

  44. Robinson, N. J., Tommey, A. M., Kuske, C., and Jackson, P. J. (1993) Plant metallothioneins.Biochem. J. 295, 1–10.

    PubMed  CAS  Google Scholar 

  45. Prasad, M. N. V. (1995) Cadmium toxicity and tolerance in vascular plants.Environ. Exp. Bot. 35, 525–545.

    CAS  Google Scholar 

  46. Rauser, W. E. (1995) Phytochelatins and related peptides Structure, biosynthesis, and function.Plant Physiol. 109, 1141–1149.

    PubMed  CAS  Google Scholar 

  47. Kägi, J. H. R. (1993) Evolution, structure and chemical activity of class I metallothioneins, an overview, inMetallothionein III: Biological Roles and Medical Implications (Suzuki, K. T., Imura, N., and Kimura, M., eds.), Birkhäuser Verlag, Basel, Switzerland, pp. 29–55.

    Google Scholar 

  48. Hanley-Bowdin, L. and Lane, B. G. (1983) A novel protein programmed by the mRNA conserved in dry wheat embryos. The principal site of cysteine incorporation during early germination.Eur. J. Biochem. 135, 9–15.

    Google Scholar 

  49. Hoffman, T., Kells, D. I. C., and Lane, B. G. (1984) Partial amino acid sequence of the wheat germ Ec protein. Comparison with another protein very rich in half-cystine and glycine, wheat germ agglutinin.Can. J. Biochem. Cell Biol. 62, 908–913.

    Google Scholar 

  50. Lane, B., Kajioka, R., and Kennedy, T. (1987) The wheat-germ Ec protein is a zinc-containing metallothionein.Biochem. Cell Biol. 65, 1001–1005.

    CAS  Google Scholar 

  51. Kawashima, I., Kennedy, T. D., Chino, M., and Lane, B. G. (1992) Wheat Ec metallothionein genes Like mammalian Zn2+ metallothionein genes, wheat Zn2+ metallothionein genes are conspicuously expressed during embryogenesis.Eur. J. Biochem. 209, 971–976.

    PubMed  CAS  Google Scholar 

  52. White, C. N. and Rivin, C. J. (1995) Characterization and expression of a cDNA encoding a seed-specific metallothionein in maize.Plant Physiol. 108, 831–832.

    PubMed  CAS  Google Scholar 

  53. Reynolds, T. L. and Crawford, R. L. (1996) Changes in abundance of an abscisic acid-responsive, early cysteine-labeled metallothionein transcript during pollen embryogenesis in bread wheat (Triticum aestivum).Plant Mol. Biol. 32, 823–829.

    PubMed  CAS  Google Scholar 

  54. de Miranda, J. R., Thomas, M. A., Thurman, D. A., and Tomsett, A. B. (1990) Metallothionein genes from the flowering plantMimulus guttatus.FEBS Lett. 260, 277–280.

    PubMed  Google Scholar 

  55. Evans, I. M., Gatehouse, L. N., Gatehouse, J. A., Robinson, N. J., and Croy, R. R. D. (1990) A gene from pea (Pisum sativum L.) with homology to metallothionein genes.FEBS Lett. 262, 29–32.

    PubMed  CAS  Google Scholar 

  56. Okumura, N., Nishizawa, N.-K., Umehara, Y., and Mori, S. (1991) An iron deficiency-specific cDNA from barley roots having two homologous cysteine-rich MT domains.Plant Mol. Biol. 17, 531–533.

    PubMed  CAS  Google Scholar 

  57. Nakanishi, H., Okumura, N., Kanegae, R., Umehara, Y., Nishizawa, N.-K., and Mori, S. (1995) A plant metallothionein-like gene from iron deficiency barley roots. GenBank Accession No. D50641.

  58. de Framond, A. J. (1991) A metallothionein-like gene from maize (Zea mays). Cloning and characterization.FEBS Lett. 290, 103–106.

    PubMed  Google Scholar 

  59. Chevalier, C., Bourgeois, E., Pradet, A., and Raymond, P. (1995) Molecular cloning and characterization of six cDNAs expressed during glucose starvation in excised maize (Zea mays L.) root tips.Plant Mol. Biol. 28, 473–485.

    PubMed  CAS  Google Scholar 

  60. Snowden, K. C. and Gardner, R. C. (1993) Five genes induced by aluminum in wheat (Triticum aestivum L.) roots.Plant Physiol. 103, 855–861.

    PubMed  CAS  Google Scholar 

  61. Ellison, N. W. (1993) Sequence analysis of two cDNA clones encoding metallothionein-like proteins from white clover (Trifolium repens L). GenBank Accession No Z26493.

  62. Zhou, J. and Goldsbrough, P. B. (1994) Functional homologs of fungal metallothionein genes fromArabidopsis.Plant Cell 6, 875–884.

    PubMed  CAS  Google Scholar 

  63. Zhou, J. and Goldsbrough, P. B. (1995) Structure, organization and expression of the metallothionein gene family inArabidopsis.Mol. Gen. Genet.,248, 318–328.

    PubMed  CAS  Google Scholar 

  64. Yeh, S.-C., Hsieh, H.-M., and Huang, P. C. (1995) Transcripts of metallothionein genes inArabidopsis thaliana.DNA Sequence—J. Seq. Map. 5, 141–144.

    CAS  Google Scholar 

  65. Buchanan-Wollaston, V. (1994) Isolation of cDNA clones for genes that are expressed during leaf senescence inBrassica napus. Identification of a gene encoding a senescence-specific metallothionein-like protein.Plant Physiol. 105, 839–846.

    PubMed  CAS  Google Scholar 

  66. Hsieh, H.-M., Liu, W.-K., and Huang P. C. (1995) A novel stress-inducible metallothionein-like gene from rice.Plant Mol. Biol. 28, 381–389.

    PubMed  CAS  Google Scholar 

  67. Lee, M. C., Kim, C. S., and Eun, M. Y. (1997) Characterization of metallothionein-like protein from rice. GenBank Accession No. AF017366.

  68. Hudspeth, R. L., Hobbs, S. L., Anderson, D. M., Rajasekaran, K., and Grula, J. W. (1996) Characterization and expression of metallothionein-like genes in cotton.Plant Mol. Biol. 31, 701–705.

    PubMed  CAS  Google Scholar 

  69. Foley, R. C., Liang, Z. M., and Singh, K. B. (1997) Analysis of type 1 metallothionein cDNAs inVicia faba.Plant Mol. Biol. 33, 583–591.

    PubMed  CAS  Google Scholar 

  70. Ma, M., Tsang, W.-K., Lau, P.-S., and Wong, Y.-S. (1997) Cloning and sequencing of the metallothionein-like cDNA fromFestuca rubra cv. Merlin. GenBank Accession No. U96646.

  71. Kawashima, I., Inokuchi, Y., Chino, M., Kimura, M., and Shimizu, N. (1991) Isolation of a gene for a metallothionein-like protein from soybean.Plant Cell Physiol. 32, 913–916.

    CAS  Google Scholar 

  72. Takahashi, K. (1991) GenBank Accession No. X62818.

  73. Weig, A. and Komor, E. (1992) Isolation of a class II metallothionein cDNA fromRicinus communis L. GenBank Accession No. L02306.

  74. Foley, R. C. and Singh, K. B. (1994) Isolation of aVicia faba metallothionein-like gene, expression in foliar trichomes.Plant Mol. Biol. 26, 435–444.

    PubMed  CAS  Google Scholar 

  75. Ledger, S. E. and Gardner, R. C. (1994) Cloning and characterization of five cDNAs for genes differentially expressed during fruit development of kiwifruit (Actinidia deliciosa var.deliciosa).Plant Mol. Biol. 25, 877–886.

    PubMed  CAS  Google Scholar 

  76. Moisyadi, S. and Stiles, J. I. (1995) A cDNA encoding a metallothionein 1-like protein from coffee leaves (Coffea arabica).Plant Physiol. 107, 295–296.

    PubMed  CAS  Google Scholar 

  77. Kim, H. U., Kim, J. B., Yun, C. H., Kang, S. K., and Chung, T. Y. (1995) Nucleotide sequence of cDNA clone encoding a metallothionein-like protein from Chinese cabbage.Plant Physiol. 108, 863.

    PubMed  CAS  Google Scholar 

  78. Coupe, S. A., Taylor, J. E., and Roberts, J. A. (1995) Characterisation of an mRNA encoding a metallothionein-like protein that accumulates during ethylene-promoted abscission ofSambucus nigra L. leaflets.Planta 197, 442–447.

    PubMed  CAS  Google Scholar 

  79. LaRosa, P. C. and Smigocki, A. C. (1995) A plant metallothionein is modulated by cytokinin. GenBank Accession No. U35225.

  80. Choi, D., Kim, H. M., Yun, H. K., Park, J.-A., Kim, W. T., and Bok, S. H. (1996) Molecular cloning of a metallothionein-like gene fromNicotiana glutinosa L. and its induction by wounding and tobacco mosaic virus infection.Plant Physiol. 112, 353–359.

    PubMed  CAS  Google Scholar 

  81. Ellison, N. W. and White, D. W. R. (1996) Isolation of two cDNA clones encoding metallothionein-like proteins fromTrifolium repens L.Plant Physiol. 112, 446. GenBank Accession No. Z26492

    Google Scholar 

  82. Kitashiba, H., Iwai, T., Toriyama, K., Watanabe, M., and Hinata, K. (1996) Identification of genes expressed in the shoot apex ofBrassica campestris during floral transition.Sex. Plant Reprod. 9, 186–188.

    Google Scholar 

  83. Hsieh, H.-M., Liu, W.-K., Chang, A., and Huang, P. C. (1996) RNA expression patterns of a type 2 metallothionein-like gene from rice.Plant Mol. Biol. 32, 525–529.

    PubMed  CAS  Google Scholar 

  84. Giritch, A., Herbik, A., Balzer, H., Stephan, U., and Baumlein, H. (1995) Cloning and characterization of metallothionein-like genes family from tomato. GenBank Accession Nos. Z68138, Z68309, Z68310.

  85. Whitelaw, C. A., Le Huquet, A., Thurman, D. A., and Tomsett, A. B. (1997) The isolation and characterization of type II metallothionein-like genes from tomato (Lycopersicon esculentum L.).Plant Mol. Biol. 33, 504–511.

    Google Scholar 

  86. Buchanan-Wollaston, V. and Ainsworth, C. (1997) Leaf senescence inBrassica napus, cloning of senescence related genes by subtractive hybridisation.Plant Mol. Biol. 33, 821–834.

    PubMed  CAS  Google Scholar 

  87. Schaefer, H. J., Haag-Kerwer, A., and Rausch, T. (1997) cDNA cloning and expression analysis of genes encoding GSH synthesis in roots of the heavy metal accumulatorBrassica juncea L., evidence for Cd-induction of putative mitochondrial γ-glutamylcysteine synthetase isoform. GenBank Accession Nos. Y10849, Y10850, Y10851, Y10852.

  88. Mbeguie-A-Mbeguie, D., Gomez, R.-M., and Fils-Lycaon, B. (1997) Molecular cloning and nucleotide sequence of an abscisic acid-, ripening-induced (ASR)-like protein from apricot fruit (Accession No. U93164). Gene expression during fruit ripening.Plant Physiol. 115, 1288.

    Google Scholar 

  89. Davies, E. C. and Thomas, J. C. (1997) A metallothionein from a facultative halophyte confers copper tolerance. GenBank Accession No. AF000935.

  90. Lee, M. C., Park, J. Y., Kim, Y. H., and Eun, M. Y. (1996) Molecular cloning and characterization of metallothionein-like protein in rice. GenBank Accession Nos. Y08529, U77294.

  91. Yu, L., Umeda, M., Liu, J. Zhao, N., and Uchiimiya, H. (1997) Characterization of a novel metallothionein-like protein gene with strong expression in the stem of rice. GenBank Accession No. AB002820.

  92. Lee, M. C., Kim, C. S., and Eun, M. Y. (1997) Characterization of metallothionein-like protein from rice. GenBank Accession No. AF017365.

  93. Reid, S. J. and Ross, G. S. (1996) Two cDNA clones encoding metallothionein-like proteins in apple are upregulated during cool storage. GenBank Accession No. U61974.

  94. Rosenfield, C. L., Kiss, E., and Hrazdina, G. (1996) MdACS-2 (Accession No. U73815) and MdACS-3 (Accession No. U73816), two new 1-aminocyclopropane-1-carboxylate synthase in ripening apple fruit.Plant Physiol. 112, 1735. GenBank Accession No. Y08322.

    Google Scholar 

  95. Clendennen, S. K. and May, G. D. (1997) Differential gene expression in ripening banana fruit.Plant Physiol. 115, 463–469.

    PubMed  CAS  Google Scholar 

  96. Lee, M. C., Lee, J. S., Yi, B. Y., and Eun, M. Y. (1997) Molecular cloning and characterization of metallothionein-like protein from rice. GenBank Accession Nos. AF001396, AF009959.

  97. Wiersma, P. A., Wu, Z., and Wilson, S. M. (1998) A fruit-related metallothionein-like cDNA clone from sweet cherry (Accession No. AF028013) corresponds to fruit genes from diverse species.Plant Physiol. 116, 867.

    Google Scholar 

  98. Murphy, A., Zhou, J., Goldsbrough, P. B., and Taiz, L. (1997) Purification and immunological identification of metallothioneins 1 and 2 fromArabidopsis thaliana.Plant Physiol. 113, 1293–1301.

    PubMed  CAS  Google Scholar 

  99. Giritch, A., Herbik, A., Balzer, H., Stephan, U., and Baumlein, H. (1995) Cloning and characterization of metallothionein-like genes family from tomato. GenBank Accession No. Z68185.

  100. Chatthai, M., Kaukinen, K. H., Tranbarger, T. J., Gupta, P. K., and Misra, S. (1997) The isolation of a novel metallothionein-related cDNA expressed in somatic and zygotic embryos of Douglas-fir, regulation by ABA, osmoticum, and metal ions.Plant Mol. Biol. 34, 243–254.

    PubMed  CAS  Google Scholar 

  101. Aguilar, M., Osuna, D., Caballero, J. L., and Munoz, J. (1997) Isolation of a cDNA encoding metallothionein-like protein (Accession No. U81041) from strawberry fruit.Plant Physiol. 113, 664.

    Google Scholar 

  102. Kusaba, M., Takahashi, Y., and Nagata, T. (1996) A multiple-stimuli-responsive as-1-related element ofparA gene confers responsiveness to cadmium but not to copper.Plant Physiol. 111, 1161–1167.

    PubMed  CAS  Google Scholar 

  103. Tommey, A. M., Shi, J., Lindsay, W. P., Urwin, P. E., and Robinson, N J. (1991) Expression of the pea genePsMT A inE. coli Metal-binding properties of the expressed protein.FEBS Lett. 292, 48–52.

    PubMed  CAS  Google Scholar 

  104. Evans, K. M., Gatehouse, J. A., Lindsay, W. P., Shi, J., Tommey, A. M., and Robinson, N. J. (1992) Expression of the pea metallothionein-like genePsMT A inEscherichia coli andArabidopsis thaliana and analysis of trace metal ion accumulation, implications forPsMT A function.Plant Mol. Biol. 20, 1019–1028.

    PubMed  CAS  Google Scholar 

  105. Robinson, N. J., Wilson, J. R., and Turner, J. S. (1996) Expression of the type 2 metallothionein-like geneMT2 fromArabidopsis thaliana in Zn2+-metallothionein-deficientSynechococcus PCC 7942, putative role for MT2 in Zn2+ metabolism.Plant Mol. Biol. 30, 1169–1179.

    PubMed  CAS  Google Scholar 

  106. Kille, P., Winge, D. R., Harwood, J. L., and Kay, J. (1991) A plant metallothionein produced inE. coli.FEBS Lett. 295, 171–175.

    PubMed  CAS  Google Scholar 

  107. Nielson, K. B. and Winge, D. R. (1983) Order of metal binding in metallothionein.J. Biol. Chem. 258, 13,063–13,069.

    CAS  Google Scholar 

  108. Murphy, A. and Taiz, L. (1995) Comparison of metallothionein gene expression and nonprotein thiols in ten Arabidopsis ecotypes.Plant Physiol. 109, 945–954.

    PubMed  CAS  Google Scholar 

  109. Cizewski Cullota, V., Klomp, L. W. J., Strain, J., Casareno, R. L. B., Krems, B., and Gitlin, J. D. (1997) The copper chaperone for superoxide dismutase.J. Biol. Chem. 272, 23,469–23,472.

    Google Scholar 

  110. Pufahl, R. A., Singer, C. P., Peariso, K. L., Lin, S.-J., Schmidt, P. J., Fahrni, C. J., et al. (1997) Metal ion chaperone function of the soluble Cu(I) receptor Atx1.Science 278, 853–856.

    PubMed  CAS  Google Scholar 

  111. Glerum, D. M., Shtanko, A., and Tzagoloff, A. (1996) Characterization ofCOX17, a yeast gene involved in copper metabolism and assembly of cytochrome oxidase.J. Biol. Chem. 271, 14,504–14,509.

    CAS  Google Scholar 

  112. Kondo, N., Imai, K., Isobe, M., Goto, T., Murasugi, A., Wada-Nakagawa, C., and Hayashi, Y. (1984) Cadystin A and B, major unit peptides comprising cadmium binding peptides induced in a fission yeast—separation, revision of structures and synthesis.Tetrahed. Lett. 25, 3869–3872.

    CAS  Google Scholar 

  113. Grill, E., Winnacker, E.-L., and Zenk, M. H. (1985) Phytochelatins, the principal heavy-metal complexing peptides of higher plants.Science 230, 674–676.

    PubMed  CAS  Google Scholar 

  114. Grill, E., Winnacker, E.-L., and Zenk, M. H. (1987) Phytochelatins, a class of heavy-metal-binding peptides from plants, are functionally analogous to metallothioneins.Proc. Natl. Acad. Sci. U.S.A. 84, 439–443.

    PubMed  CAS  Google Scholar 

  115. Gekeler, W., Grill, E., Winnacker, E.-L., and Zenk, M. H. (1988) Algae sequester heavy metals via synthesis of phytochelatin complexes.Arch. Microbiol. 150, 197–202.

    CAS  Google Scholar 

  116. Gekeler, W., Grill, E., Winnacker, E.-L., and Zenk, M. H. (1989) Survey of the plant kingdom for the ability to bind heavy metals through phytochelatins.Z. Naturforsch. 44c, 361–369.

    Google Scholar 

  117. Grill, E., Winnacker, E.-L., and Zenk, M. H. (1988) Occurrence of heavy metal binding phytochelatins in plants growing in a mining refuse area.Experientia 44, 539–540.

    CAS  Google Scholar 

  118. Gawel, J. E., Ahner, B. A., Friedland, A. J., and Morel, F. M. M. (1996) Role for heavy metals in forest decline indicated by phytochelatin measurements.Nature 381, 64–65.

    CAS  Google Scholar 

  119. Ahner, B. A., Price, N. M., and Morel, F. M. M. (1994) Phytochelatin production by marine phytoplankton at low free metal ion concentrations, laboratory studies and field data from Massachusetts Bay.Proc. Natl. Acad. Sci. U.S.A. 91, 8433–8436.

    PubMed  CAS  Google Scholar 

  120. Grill, E., Winnacker, E.-L., and Zenk, M. H. (1986) Synthesis of seven different homologous phytochelatins in metal-exposedSchizosaccharomyces pombe cells.FEBS Lett. 197, 115–120.

    CAS  Google Scholar 

  121. Reese, R. N., Mehra, R. J., Tarbet, E. B., and Winge, D. R. (1988) Studies on the γ-glutamyl Cu-binding peptide fromSchizosaccharomyces pombe.J. Biol. Chem. 263, 4186–4192.

    PubMed  CAS  Google Scholar 

  122. Mehra, R. J., Tarbet, E. B., Gray, W. R., and Winge, D. R. (1988) Metal-specific synthesis of two metallothioneins and γ-glutamyl peptides inCandida glabrata.Proc. Natl. Acad. Sci. U.S.A. 85, 8815–8819.

    PubMed  CAS  Google Scholar 

  123. Kneer, R., Kutchan, T. M., Hochberger, A., and Zenk, M. H. (1992)Saccharomyces cerevisiae andNeurospora crassa contain heavy metal sequestering phytochelatin.Arch. Microbiol. 157, 305–310.

    PubMed  CAS  Google Scholar 

  124. Grill, E., Gekeler, W., Winnacker, E.-L., and Zenk, M. H. (1986) Homo-phytochelatins are heavy metal-binding peptides of homo-glutathione containing Fabales.FEBS Lett. 205, 47–50.

    CAS  Google Scholar 

  125. Mehra, R. K. and Winge, D. R. (1988) Cu(I) binding to theSchizosaccharomyces pombe γ-glutamyl peptides varying in chain lengths.Arch. Biochem. Biophys. 265, 381–389.

    PubMed  CAS  Google Scholar 

  126. Barbas, J., Santhanagopalan, V., Blaszczynski, M., Ellis Jr., W. R., and Winge, D. R. (1992) Conversion in the peptides coating cadmium:sulfide crystallites inCandida glabrata.J. Inorg. Biochem. 48, 95–105.

    PubMed  CAS  Google Scholar 

  127. Kubota, H., Sato, K., Yamada, T., and Maitani, T. (1995) Phytochelatins (class III metallothioneins) and their desglycyl peptides induced by cadmium in normal root cultures ofRubia tinctorum L.Plant Sci. 106, 157–166.

    CAS  Google Scholar 

  128. Klapheck, S., Fliegner, W., and Zimmer, I. (1994) Hydroxymethyl-phytochelatins [(γ-gluta-mylcysteine)n-serine] are metal-induced peptides of the Poaceae.Plant Physiol. 104, 1325–1332.

    PubMed  CAS  Google Scholar 

  129. Meuwly, P., Thibault, P., Schwan, A. L., and Rauser, W. E. (1995) Three families of thiol peptides are induced by cadmium in maize.Plant J. 7, 391–400.

    PubMed  CAS  Google Scholar 

  130. Rauser, W. E. and Meuwly, P. (1995) Retention of cadmium in roots of maize seedlings.Plant Physiol. 109, 195–202.

    PubMed  CAS  Google Scholar 

  131. Klapheck, S., Chrost, B., Starke, J., and Zimmermann, H. (1992) γ-glutamylcysteinylserine: a new homologue of glutathione in plants of the family Poaceae.Botanica Acta 105, 174–179.

    CAS  Google Scholar 

  132. Meuwly, P., Thibault, P., and Rauser, W. E. (1993) γ-Glutamylcysteinylglutamic acid: a new homologue of glutathione in maize seedlings exposed to cadmium.FEBS Lett.336, 472–476.

    PubMed  CAS  Google Scholar 

  133. Zenk, M. H. (1996) Heavy metal detoxification in higher plants: a review.Gene 179, 21–30.

    PubMed  CAS  Google Scholar 

  134. Maitani, T., Kubota, H., Sato, K., Yamada, T. (1996) The composition of metals bound to class III metallothionein (phytochelatin and its desglycyl peptide) induced by various metals in root cultures ofRubia tinctorum.Plant Physiol.110, 1145–1150.

    PubMed  CAS  Google Scholar 

  135. Grill, E., Löffler, S., Winnacker, E.-L., and Zenk, M. H. (1989) Phytochelatins, the heavymetal-binding peptides of plants, are synthesized from glutathione by a specific γ-glytamylcysteine dipeptidyl transpeptidase (phytochelatin synthase).Proc. Natl. Acad. Sci. U.S.A. 86, 6838–6842.

    PubMed  CAS  Google Scholar 

  136. Loeffler, S., Hochberger, A., Grill, E., Winnacker, E.-L., and Zenk, M. H. (1989) Termination of the phytochelatin synthase reaction through sequestration of heavy metals by the reaction product.FEBS Lett. 258, 42–46.

    CAS  Google Scholar 

  137. Yoshimura, E., Kabuyama, Y., Yamazaki, S., and Toda, S. (1990) Activity of poly(γ-glutamylcysteinyl)-glycine synthesis in crude extract of fission yeast,Schizosaccharomyces pombe.Agric. Biol. Chem. 54, 3025–3026.

    PubMed  CAS  Google Scholar 

  138. Hayashi, Y., Nakagawa, C. W., Mutoh, N., Isobe, M., and Goto, T. (1991) Two pathways in the biosynthesis of cadystin (γEC)nG in the cell-free system of the fission yeast.Biochem. Cell Biol. 69 115–121.

    PubMed  CAS  Google Scholar 

  139. Klapheck, S., Schlunz, S., and Bergmann, L. (1995) Synthesis of phytochelatins and homophytochelatins inPisum sativum L.Plant Physiol. 107, 515–521.

    PubMed  CAS  Google Scholar 

  140. de Knecht, J. A., van Baren, N., Ten Bookum, W. M., Wong Fong Sang, H. W., Koevoets, P. L. M., Schat, H., and Verkleij, J. A. C. (1995) Synthesis and degradation of phytochelatins in cadmium-sensitive and cadmium-tolerantSilene vulgaris.Plant Sci. 106, 9–18.

    Google Scholar 

  141. Chen, J., Zhou, J., and Goldsbrough, P. B. (1997) Characterization of phytochelatin synthase from tomato.Physiol. Plant. 101, 165–172.

    CAS  Google Scholar 

  142. Meuwly, P. and Rauser, W. E. (1992), Alteration of thiol pools in roots and shoots of maize seedlings exposed to cadmium.Plant Physiol. 99, 8–15.

    PubMed  CAS  Google Scholar 

  143. Ju, G. C., Li, X.-Z., Rauser, W. E., and Oaks, A.. (1997) Influence of cadmium on the production of γ-glutamylcysteine peptides and enzymes of nitrogen assimilation inZea mays seedlings.Physiol. Plant. 101, 777–786.

    Google Scholar 

  144. Costa, G. and Spitz, E. (1997) Influence of cadmium on soluble carbohydrates, free amino acids, protein content of in vitro culturedLupinus albus.Plant Sci. 128, 131–140.

    CAS  Google Scholar 

  145. Noctor, G., Arisi, A.-C. M., Jouanin, L., Valadier, M.-H., Roux, Y., and Foyer, C. H. (1997) The role of glycine in determining the rate of glutathione synthesis in poplar. Possible implications for glutathione production during stress.Physiol. Plant. 100, 255–263.

    CAS  Google Scholar 

  146. Mutoh, N. and Hayashi, Y. (1988), Isolation of mutants ofSchizosaccharomyces pombe unable to synthesize cadystin, small cadmium-binding peptides.Biochem. Biophys. Res. Commun. 151, 32–39.

    PubMed  CAS  Google Scholar 

  147. Howden, R., Goldsbrough, P. B., Andersen, C. R., and Cobbett, C. S. (1995) Cadmiumsensitive,cad1 mutants ofArabidopsis thaliana are phytochelatin deficient.Plant Physiol.107, 1059–1066.

    PubMed  CAS  Google Scholar 

  148. Chen, J. and Goldsbrough, P. B. (1994) Increased activity of γ-glutamylcysteine synthetase in tomato cells selected for, cadmium tolerance.Plant Physiol.106, 233–239.

    PubMed  CAS  Google Scholar 

  149. Schäffer, H. J., Greiner, S., Rausch, T., and Haag-Kerwer, A. (1997) In seedlings of the heavy metal accumulatorBrassica juncea Cu2+ differentially affects transcript amounts for γ-glutamylcysteine synthetase (ECS) and metallothionein (MT2).FEBS Lett. 404, 216–220.

    Google Scholar 

  150. Murasugi, A., Wada, C., and Hayashi, Y. (1981) Cadmium-binding peptide induced in fission yeast,Schizosaccharomyces pombe.J. Biochem. 90, 1561–1564.

    PubMed  CAS  Google Scholar 

  151. Kneer, R. and Zenk, M. H. (1997) The formation of Cd-phytochelatin complexes in plant cell cultures.Phytochem. 44, 69–74.

    CAS  Google Scholar 

  152. Strasdeit, H., Duhme, A.-K., Kneer, R., Zenk, M. H., Hermes, C., and Nolting, H.-F. (1991) Evidence for discrete Cd(SCys)4 units in cadmium phytochelatin complexes from EXAFS spectroscopy.J. Chem Soc., Chem. Commun. 16, 1129–1130.

    Google Scholar 

  153. Reese, R. N., White, C. A., and Winge, D. R. (1992) Cadmium-sulfide crystallites in Cd-(γEC)nG peptide complexes from tomato.Plant Physiol. 98, 225–229.

    PubMed  CAS  Google Scholar 

  154. Salt, D. E., Pickering, I. J., Prince, R. C., Gleba, D., Dushenkov, S., Smith, R. D., and Raskin, I. (1997) Metal accumulation by aquacultured seedlings of Indian mustard.Environ. Sci. Technol. 31, 1636–1644.

    CAS  Google Scholar 

  155. Murasugi, A., Wada, C., and Hayashi, Y. (1983) Occurrence of acid-labile sulfide in cadmium-binding peptide 1 from fission yeast.J. Biochem. 93, 661–664.

    PubMed  CAS  Google Scholar 

  156. Speiser, D. M., Abrahamson, S. L., Banuoelos, G., and Ow, D. W. (1992)Brassica juncea, produces a phytochelatin-cadmium-sulfide complex.Plant Physiol 99, 817–821.

    PubMed  CAS  Google Scholar 

  157. Rauser, W. E. (1997) Two cadmium-binding complexes occur in roots of maize, properties and function.Plant Physiol.114(Suppl), 126.

    Google Scholar 

  158. Dameron, C. T., Reese, N. R., Mehra, R. K., Kortan, A. R., Carroll, P. J., Steigerwald, M. L., Brus, L. E., and Winge, D. R. (1989) Biosynthesis of cadmium sulphide quantum semiconductor crystallites.Nature 338, 596–597.

    CAS  Google Scholar 

  159. Reese, N. R. and Winge, D. R. (1988) Sulfide stabilization of the cadmium-γ-glutamyl peptide complex ofSchizosaccharomyces pombe.J. Biol. Chem. 263, 12832–12835.

    PubMed  CAS  Google Scholar 

  160. Jackson, P. J., Delhaize, E., and Kuske, C. R. (1992) Biosynthesis and metabolic roles of cadystins (γ-EC)nG and their precursors inDatura innoxia.Plant Soil 146, 281–289.

    CAS  Google Scholar 

  161. Mehra, R. K. and Mulchandani, P. (1995) Glutathione-mediated transfer of Cu(I) into phytochelatins.Biochem. J. 307, 697–705.

    PubMed  CAS  Google Scholar 

  162. Mehra, R. K., Kodati, R., and Abdullah, R. (1995) Chain length-dependent Pb(II)-coordination in phytochelatins.Biochem. Biophys. Res. Commun. 215, 730–736.

    PubMed  CAS  Google Scholar 

  163. Mehra, R. K., Tran, K., Scott, G. W. Mulchandani, P., and Saini, S. S. (1996) Ag(I)-binding to phytochelatins.J. Inorg. Biochem. 61, 125–142.

    PubMed  CAS  Google Scholar 

  164. Mehra, R. K., Miclat, J., Kodati, R., Abdullah, R., Hunter, T. C., and Mulchandani, P. (1996) Optical spectroscopic and reversephase HPLC analyses of Hg(II) binding to phytochelatins.Biochem. J. 314, 73–82.

    PubMed  CAS  Google Scholar 

  165. Bae, W. and Mehra, R. K. (1997) Metalbinding characteristics of a phytochelatin analog (Glu-Cys)2-Gly.J. Inorg. Biochem. 68, 201–210.

    CAS  Google Scholar 

  166. Ortiz, D. F., Kreppel, L., Speiser, D. M., Scheel, G., Macdonald, G., and Ow, D. W. (1992) Heavy metal tolerance in the fission yeast requires an ATP-binding cassette-type vacuolar membrane transporter.EMBO J. 11, 3491–3499.

    PubMed  CAS  Google Scholar 

  167. Ortiz, D. F., Ruscitti, T., McCue, K. F., and Ow, D. W. (1995) Transport of metal-binding peptides by HMT1, a fission yeast ABC-type vacuolar membrane protein.J. Biol. Chem. 270, 4721–4728.

    PubMed  CAS  Google Scholar 

  168. Salt, D. E. and Wagner, G. J. (1993) Cadmium transport across tonoplast of vesicles from oat roots. Evidence for a Cd2+/H+ antiport activity.J. Biol. Chem. 268, 12,297–12,302.

    CAS  Google Scholar 

  169. Salt, D. E. and Rauser, W. E. (1995) MgATP-dependent transport of phytochelatins across the tonoplast of oat roots.Plant Physiol. 107, 1293–1301.

    PubMed  CAS  Google Scholar 

  170. Grill, E., Thumann, J., Winnacker, E.-L., and Zenk, M. H. (1988) Induction of heavy-metal binding phytochelatins by inoculation of cell cultures in standard media.Plant Cell Rep.7, 375–378.

    CAS  Google Scholar 

  171. Thumann, J., Grill, E., Winnacker, E.-L., and Zenk, M. H. (1991) Reactivation of metalrequiring apoenzymes by phytochelatin-metal complexes.FEBS Lett.284, 66–69.

    PubMed  CAS  Google Scholar 

  172. Kneer, R. and Zenk, M. H. (1992) Phytochelatins protect plant enzymes from heavy metal poisoning.Phytochemistry 31, 2663–2667.

    CAS  Google Scholar 

  173. Verkleij, J. A. C., Koevoets, P., van't Riet, J., Bank, R., Nijdam, Y., and Ernst, W. H. O. (1990) Poly(γ-glutamylcysteinyl) glycines or phytochelatins and their role in cadmium tolerance ofSilene, vulgaris.Plant Cell Environ.13, 913–921.

    CAS  Google Scholar 

  174. Schat, H. and Kalff, M. M. A. (1992) Are phytochelatins involved in differential metal tolerance or do they merely reflect metal-imposed strain?Plant Physiol.99, 1475–1480.

    PubMed  CAS  Google Scholar 

  175. de Knecht, J. A., van Dillen, M., Koevoets, P. L. M., Schat, H., Verkleij, J. A. C., and Ernst, W. H. O. (1994) Phytochelatins in cadmiumsensitive and cadmium-tolerantsilene vulgaris.Plant Physiol. 104, 255–261.

    PubMed  Google Scholar 

  176. Harmens, H., den Hartog, P. R., Ten Bookum, W. M., and Verkleij, J. A. C. (1993) Increased zinc tolerance inSilene vulgaris (Moench) Garcke is not due to increased production of phytochelatins.Plant Physiol.103, 1305–1309.

    PubMed  CAS  Google Scholar 

  177. de Vos, C. H. R., Vonk, M. J., Vooijs, R., and Schat, H. (1992) Glutathione depletion due to copper-induced phytochelatin synthesis causes oxidative stress inSilene cucubalus.Plant Physiol. 98, 853–858.

    PubMed  Google Scholar 

  178. Yeargan, R., Maiti, I. B., Nielsen, M. T., Hunt, A. G., and Wagner, G. J. (1992) Tissue partitioning of cadmium in transgenic tobacco seedlings and field grown plants expressing the mouse metallothionein I gene.Transgenic Res. 1, 261–267.

    PubMed  CAS  Google Scholar 

  179. Pan, A., Yang, M., Tie, F., Li, L., Chen, Z., and Ru, B. (1994) Expression of mouse metallothionein-I gene confers cadmium resistance in transgenic tobacco plants.Plant Mol. Biol. 24, 341–351.

    PubMed  CAS  Google Scholar 

  180. Hasegawa, I., Terada, E., Sunairi, M., Wakita, H., Shinmachi, F., Noguchi, A., Nakajima, M., and Yazaki, J. (1997) Genetic improvement of heavy metal tolerance in plants by transfer of the yeast metallothionein gene (CUP1).Plant Soil 196, 277–281.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wilfried E. Rauser.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rauser, W.E. Structure and function of metal chelators produced by plants. Cell Biochem Biophys 31, 19–48 (1999). https://doi.org/10.1007/BF02738153

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02738153

Index Entries

Navigation