Skip to main content
Log in

Electron scattering in microstructure processes

  • Published:
La Rivista del Nuovo Cimento (1978-1999) Aims and scope

Conclusions

The study of electron beam penetration in solids is fundamental to understanding the basic processes in a variety of applications, such as microscopy, electron probe microanalysis and microlithography. The physics of electron scattering in solids has been discussed in sect. 2, in order to obtain a useful theoretical description of the electron transport problem. Due to the complexity of the electron scattering process strong simplifications have been proposed. The single-scattering approach of Everhart and the diffusion sphere approach of Archard, described in sect. 3, have the merit of modelling, in a very simple way, two extreme cases, large-angle single scattering and diffusion: the real situation can be considered as being intermediate between the two. Presently, the most basic approach to the study the electron penetration in solids is the Monte Carlo method. MC calculations consider the behaviour of individual electrons. The trajectory of an electron through the solid is calculated step by step, assuming it is scattered through randomly determined angles, on the basis of the equations used to approximate the physical processes. The great success of Monte Carlo calculations relies upon three factors: a) its adaptability to systems having a variety of geometries, with reference to size, shape or internal structure; b) the number of different output data available from MC calculations, in the form of plots of electron trajectories, energy and angular distributions of forward and backward scattered electrons; c) the physical insight into the problem, allowed by the capability of treating the process directly in terms of its basic mechanisms. The accuracy of such calculations depends on the accuracy of the modelling of the scattering, MC results being, in any case, more accurate than analytical treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Wentzel: Z. Phys., 40, 590 (1927).

    Article  ADS  Google Scholar 

  2. R. E. Burge and G. H. Smith: Proc. Phys. Soc. London, 79, 673 (1962).

    Article  ADS  Google Scholar 

  3. F. Lenz: Z. Naturforsch. A, 9, 185 (1954).

    Article  ADS  Google Scholar 

  4. C. J. Joachain: Quantum Collision Theory (Elsevier Science Publisher, Amsterdam 1975).

    Google Scholar 

  5. E. G. Williams: Proc. R. Soc. A, 169, 531 (1939).

    Article  ADS  Google Scholar 

  6. S. Leisegang: Z. Phys., 132, 183 (1952).

    Article  ADS  Google Scholar 

  7. B. P. Nigam, M. K. Sundaresan and Ta-You Wu: Phys. Rev., 115, 491 (1959).

    Article  MathSciNet  ADS  Google Scholar 

  8. H. Bethe: Handb. Phys., 24, 519 (1933).

    Google Scholar 

  9. R. D. Birkoff: Handb. Phys., 34, 53 (1958).

    ADS  Google Scholar 

  10. G. Love, M. G. C. Cox and V. D. Scott: J. Phys. D, 10, 7 (1977).

    Article  ADS  Google Scholar 

  11. T. E. Everhart and P. H. Hoff: J. Appl. Phys., 42, 5837 (1971).

    Article  ADS  Google Scholar 

  12. M. J. Berger and S. M. Seltzer: Nuclear Science Series Report No. 39 NAS-NCR Publication No. 1133 (National Academy of Sciences, Washington, D. C, 1964), p. 205.

  13. P. Duncumb and C. da Casa: Conference on Electron Probe Microanalysis (Institute of Physics and Physical Society, London, 1967).

    Google Scholar 

  14. R. H. Ritchie, F. W. Garber, Y. Nakai and R. D. Firkhoff: Adv. Radiat. Biol., 3, 1 (1969) (Academic Press, New York).

    Google Scholar 

  15. C. J. Powell: Rev. Mod. Phys., 48, 33 (1976).

    Article  ADS  Google Scholar 

  16. T. S. Rao-Sahib and D. B. Wittry: J. Appl. Phys., 45, 5060 (1974).

    Article  ADS  Google Scholar 

  17. J. J. Thomson: Conduction of Electricity Through Gases (Cambridge University Press, Cambridge, England, 1906).

    Google Scholar 

  18. T. E. Everhart: J. Appl. Phys., 31, 1483 (1960).

    Article  ADS  Google Scholar 

  19. G. D. Archard: J. Appl. Phys., 32, 1505 (1961).

    Article  ADS  Google Scholar 

  20. H. A. Bethe, M. B. Rose and L. P. Smith: Proc. Am. Phil. Soc, 78, 573 (1938).

    Google Scholar 

  21. S. G. Tomlin: Proc. Phys. Soc, 82, 465 (1963).

    Article  ADS  Google Scholar 

  22. V. E. Cosslett: Br. J. Appl. Phys., 15, 107 (1964).

    Article  ADS  Google Scholar 

  23. H. Kanter: Br. J. Appl. Phys., 15, 555 (1964).

    Article  ADS  Google Scholar 

  24. H. W. Thummel: Durchgang von Elektronen- und Betastrahlung durch Materieschichten (Passage of electron and beta rays rough films of matter) (Akademie-Verlag, Berlin, German Democratic Rep., 1974), Chapt. 9–11.

    Google Scholar 

  25. H. Niedrig: Scanning Electron Microsc, 1, 29 (1981).

    Google Scholar 

  26. H. Niedrig: Electron Beam Interactions with Solids, SEM, Inc., AMF O’Hare (Chicago), IL 60666, U.S.A., p. 51.

  27. R. W. Nosker: J. Appl. Phys., 40, 1872 (1969).

    Article  ADS  Google Scholar 

  28. J. S. Greeneich and Van Duzer: IEEE Trans. Electron Devices, ED-21, 286 (1974).

    Article  Google Scholar 

  29. R. J. Hawryluk, A. M. Hawryluk and H. I. Smith: J. Appl. Phys., 45, 2251 (1974).

    Article  Google Scholar 

  30. M. H. Kalos and P. A. Whitlock: Monte Carlo Methods (John Wiley & Sons, 1985).

  31. R. Y. Rubinstein: Simulation and The Monte Carlo Method (John Wiley & Sons, 1981).

  32. D. F. Kyser and K. Murata: Proceedings of the VI International Conference on Electron and Ion Beam Science and Technology (The Electrochemical Society, Princeton, N. J., 1974).

    Google Scholar 

  33. K. Murata, T. Matsukawa and R. Shimizu: Jpn. J. Appl. Phys., 10, 678 (1971).

    Article  ADS  Google Scholar 

  34. K. Murata: J. Appl. Phys., 45, 4110 (1974).

    Article  ADS  Google Scholar 

  35. K. Murata: Electron Beam Interactions with Solids, SEM, Inc., AMF O’Hare (Chicago), IL 60666, U.S.A., p. 311.

  36. L. A. Kulchetsky and G. D. Latychev: Phys. Rev., 61, 254 (1942).

    Article  ADS  Google Scholar 

  37. M. Green: Proc. Phys. Soc., 82, 204 (1963).

    Article  ADS  Google Scholar 

  38. I. R. McDonald, A. M. Lamki and C. F. G. Delaney: J. Phys. D., 4, 1210 (1971).

    Article  ADS  Google Scholar 

  39. K. Murata: J. Appl. Phys., 57, 575 (1985).

    Article  ADS  Google Scholar 

  40. K. Murata, M. Kotera, K. Nagami and S. Namba: IEEE Trans. Electron Devices, ED-32, 1694 (1985).

    Article  Google Scholar 

  41. I. Adesida, T. E. Everhart and R. Shimizu: J. Vac. Sci. Technol., 16, 1743 (1979).

    Article  ADS  Google Scholar 

  42. S. Horiguchi, M. Suzuki, T. Kobayashi, H. Yoshino and Y. Sakakibara: Appl. Phys. Lett., 39, 512 (1981).

    Article  ADS  Google Scholar 

  43. R. J. Hawryluk, A. M. Hawryluk and H. I. Smith: J. Appl. Phys., 53, 5985 (1982).

    Article  ADS  Google Scholar 

  44. J. Henoc and F. Maurice: CEA Report R-4615 (Atomic Energy Commission, France, 1975).

    Google Scholar 

  45. R. Shimizu, Y. Kataoka, T. Matsukawa, T. Ikuta, K. Murata and H. Hashimoto: J. Phys. D, 8, 820 (1975).

    Article  ADS  Google Scholar 

  46. R. Shimizu, Y. Kataoka, T. Ikuta, T. Koshikawa and H. Hashimoto: J. Phys. D. A, 9, 101 (1976).

    Article  ADS  Google Scholar 

  47. M. Gryzinski: Phys. Rev., 138, 336 (1965).

    Article  MathSciNet  ADS  Google Scholar 

  48. R. Shimizu and T. E. Everhart: Appl. Phys. Lett., 33, 784 (1978).

    Article  ADS  Google Scholar 

  49. E. R. Krefting and L. Reimer: Quantitative Analysis with Electron Microprobes and Secondary Ion Mass Spectroscopy, edited by E. Preuss (Zentral-Bibliothek der KFA, Julich, 1973), p. 114.

    Google Scholar 

  50. S. Ichimura, M. Aratama and R. Shimizu: J. Appl. Phys., 51, 2853 (1980).

    Article  ADS  Google Scholar 

  51. M. Kotera, K. Murata and K. Nagami: J. Appl. Phys., 52, 997, 7403 (1981).

    Article  ADS  Google Scholar 

  52. I. Adesida, R. Shimizu and T. E. Everhart: J. Appl. Phys., 51, 5963 (1980).

    ADS  Google Scholar 

  53. R. D. Evans: The Atomic Nucleus (McGraw Hill, New York, N. Y., 1955), p. 576.

    Google Scholar 

  54. N. F. Moller: Z. Phys., 70, 786 (786).

  55. N. F. Mott: Proc. R. Soc. London Ser. A, 126, 259 (1930).

    Article  ADS  Google Scholar 

  56. K. Murata, D. F. Kyser and C. H. Ting: J. Appl. Phys., 52, 4396 (1981).

    Article  ADS  Google Scholar 

  57. D. C. Joy: Microel. Eng., 1, 103 (1983).

    Article  Google Scholar 

  58. G. Messina, A. Paoletti, S. Santangelo and A. Tucciaeone: Proceedings of the International Conference on Microlithography ME91, September 17–19, 1991, Rome, Italy.

  59. G. Messina, A. Paoletti, S. Santangelo and A. Tucciarone: to be published.

  60. M. Parikh: J. Appl. Phys., 50, 4371 (1979) Part I, 4378 (1979) Part II, 4383 (1979) Part. III.

    Article  ADS  Google Scholar 

  61. T. H. P. Chang: J. Vac. Sei. Technol., 1, 1271 (1979).

    Google Scholar 

  62. M. Parikh and D. F. Kyser: J. Appl. Phys., 50, 1104 (1979).

    Article  ADS  Google Scholar 

  63. J. S. Greeneich: Electron Beam Process, in G. R. Brewer (Editor): Electron Beam Technology in Microelectronic Fabrication (Academic Press, New York, N. Y., 1980).

    Google Scholar 

  64. S. J. Wind, M. G. Rosenfield, G. Pepper, W. W. Molzen and P. D. Gerber: J. Vac. Sci. Technol. B, 7, 1507 (1989).

    Article  Google Scholar 

  65. S. A. Rishton and D. P. Kern: J. Vac. Sci. Technol. B, 5, 135 (1987).

    Article  Google Scholar 

  66. M. G. Rosenfield, S. J. Wind, W. W. Molzen and P. D. Gerber: Microelectronic Engineering, 11, 617 (1990).

    Article  Google Scholar 

  67. M. Gentili, A. Lucchesini, P. Lugli, G. Messina, A. Paoletti, S. Santangelo, A. Tucciarone and G. Petrocco: J. Vac. Sci. Technol. B, 7, 1586 (1989).

    Article  Google Scholar 

  68. M. G. Rosenfield, S. A. Rishton, D. P. Kern, D. E. Seeger and C. A. Whiting: J. Vac. Sci. Technol. B, 8, 1763 (1990).

    Article  Google Scholar 

  69. G. R. Brewer (Editor): Electron Beam Technology in Microelectronic Fabrication (Academic Press, New York, N. Y., 1980).

    Google Scholar 

  70. A. Heuberger: J. Vac. Sci. Technol. B, 6, 107 (1988).

    Article  Google Scholar 

  71. M. Gentili, A. Lucchesini, P. Lugli, G. Messina, A. Paoletti, S. Santangelo, A. Tucciarone and G. Petrocco: Microelectronic Engineering, 9, 147 (1989).

    Article  Google Scholar 

  72. M. Gentili, A. Lucchesini, L. Scopa, P. Lugli, G. Messina, A. Paoletti, S. Santangelo and A. Tucciarone: European Transactions on Telecommunications and Related Technologies, Vol. I, 61 (1990).

    Google Scholar 

  73. G. Messina, A. Paoletti, S. Santangelo and A. Tucciarone: Microelectronic Engineering, 11, 625 (1990).

    Article  Google Scholar 

  74. G. A. C. Jones, S. Blythe and H. Ahmed: J. Vac. Sci. Technol. B, 5, 120 (1987).

    Article  Google Scholar 

  75. C. P. Umbach and A. N. Broers: Appl. Phys. Lett., 56, 1504 (1990).

    Article  Google Scholar 

  76. F. Carcegnac, A. M. Haghiri-Gosnet, G. Messina, A. Paoletti, F. Rousseaux, S. Santangelo and A. Tucciarone: Microelectronic Engineering, 13, 197 (1991).

    Article  Google Scholar 

  77. G. Messina, A. Paoletti, S. Santangelo and A. Tucciarone: to be published.

  78. G. Messina, A. Paoletti, S. Santangelo and A. Tucciarone: Nuovo Cimento D, 13, 1049 (1991).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by Finalized Project MA.D.E.S.S. of Consiglio Nazionale delle Ricerche.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Messina, G., Paoletti, A., Santangelo, S. et al. Electron scattering in microstructure processes. Riv. Nuovo Cim. 15, 1–57 (1992). https://doi.org/10.1007/BF02742957

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02742957

Navigation