Skip to main content
Log in

Some numerical schemes using curvilinear coordinate grids for incompressible and compressible Navier-Stokes equations

  • Surveys In Fluid Mechanics — III
  • Published:
Sadhana Aims and scope Submit manuscript

Abstract

In this review paper some numerical schemes recently developed by the authors and their coworkers for analysing the cascade flows of turbomachinery are described. These schemes use the curvilinear coordinate grid and solve the momentum equations of contravariant velocities (volume flux). The compressible flow schemes are based on the delta-form approximate-factorization finite-difference scheme, and are improved by using the diagonalization, the flux difference splitting and thetvd schemes to save computational effort and to increase stability and resolvability. Furthermore, using higher-order compacttvd muscl schemes, we can capture not only shock waves but also contact surfaces very sharply. On the other hand, the incompressible flow schemes are based on the well-knownSMAC scheme, and are extended to the curvilinear coordinate grid and further to the implicit scheme to reduce computations. These schemes, like thesmac scheme, satisfy the continuity condition identically, and suppress the occurrence of spurious errors. In both the compressible and incompressible schemes, for the turbulent flow thek-ɛ turbulence model with the law of the wall or considering the low Reynolds number effects is employed, and for the unsteady flow the Crank-Nicholson method is employed and the solution at each time step is obtained by the Newton iteration. Use of the volume flux instead of the physical velocity is inevitable for theMAC type schemes, and makes it easy to impose boundary conditions. Finally, some calculated results using the present schemes are shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amsden A A, Harlow F H 1970 A simplifiedMAC technique for incompressible fluid flow calculations.J. Comput. Phys. 6: 322–325

    Article  MATH  Google Scholar 

  • Anderson K A, Thomas J L, Whitfield D L 1988 Multigrid acceleration of the flux split Euler equations.AIAA J. 26: 649–657

    Google Scholar 

  • Armaly B P, Durst F, Peretra J C F, Schönung D 1983 Experimental and theoretical investigation of back ward-facing step flow.J. Fluid Mech. 127: 473–496

    Article  Google Scholar 

  • Baines N C, Oldfield M L G, Simons J P, Wright J M 1986 The aerodynamics development of a highly loaded nozzle guide vane.Trans. ASME, J. Turbomach. 108: 261–268

    Google Scholar 

  • Beam R M, Warming R F 1978 An implicit factored scheme for the compressible Navier-Stokes equations.AIAA J. 16: 393–402

    MATH  Google Scholar 

  • Chakravarthy S R, Osher S 1985 A new class of high accuracytvd schemes for hyperbolic conservation laws.AIAA Paper No. 85-0363

  • Chang J L C, Kwak D, Rogers S E, Yang R J 1988 Numerical simulation methods of incompressible flows and application to the space shuttle main engine.Int. J. Numer. Methods Fluids 8: 1241–1268

    Article  MATH  Google Scholar 

  • Chien K Y 1981 Prediction of channel and boundary-layer flows with a low-Reynolds number turbulence model.AIAA J. 20: 33–38

    Google Scholar 

  • Chorin A J 1967 A numerical method for solving incompressible viscous flow problems.J. Comput. Phys. 2: 12–26

    Article  MATH  Google Scholar 

  • Chorin A J 1968 Numerical solution of the Navier-Stokes equations.Math. Comput. 22: 745–762

    Article  MATH  MathSciNet  Google Scholar 

  • Daiguji H, Yamamoto S 1988 An implicit time-marching method for solving the 3-D compressible Navier-Stokes equations.Lecture notes in Physics. Vol. 323 (New York: Springer-Verlag)

    Google Scholar 

  • Daiguji H, Yamamoto S, Motohashi Y 1987 Time-marching finite-difference schemes for three-dimensional compressible Euler equations.Trans. Jpn. Soc. Mech. Eng. B53: 393–399 (in Japanese)

    Google Scholar 

  • Demirdzic I, Gosman A D, Issa R I, Peric M 1987 A calculation procedure for turbulent flow in complex geometries.Comput. Fluids 15: 251–273

    Article  MATH  Google Scholar 

  • Denton J D 1974 A time marching method for two- and three-dimensional blade to blade flows.ARC R & M 3775

  • Denton J D 1983 Am improved time-marching method for turbomachinery flow calculation.Trans. ASME, J. Eng. Power 105: 514–524

    Google Scholar 

  • Dodge P R 1977 Numerical method for 2-D and 3-D viscous flows.AIAA J. 15: 961–965

    MATH  Google Scholar 

  • Emery J C, Herrig L J, Erwin J R, Felix A R 1958 Systematic two-dimensional cascade tests ofnaca 65-series compressor blades at low speeds.naca Report No. 1368

  • Harlow F H, Welch J E 1965 Numerical calculation of time dependent viscous incompressible flow of fluid with free surface.Phys. Fluids 8: 2182–2189

    Article  Google Scholar 

  • Harten A 1983 High resolution schemes for hyperbolic conservation laws.J. Comput. Phys. 49: 357–393

    Article  MATH  MathSciNet  Google Scholar 

  • Harten A 1989ENO schemes with subcell resolution.J. Comput. Phys. 83: 148–184

    Article  MATH  MathSciNet  Google Scholar 

  • Hartwich P M, Hsu C H 1988 High-resolution upwind schemes for the three-dimensional incompressible Navier-Stokes equations.AIAA J. 26: 1321–1328

    MATH  MathSciNet  Google Scholar 

  • Ikohagi T, Shin B R 1991 Finite-difference schemes for steady incompressible Navier-Stokes equations in general curvilinear coordinates.Comput. Fluids 19: 479–488

    Article  MATH  Google Scholar 

  • Ikohagi T, Shin B R, Daiguji H 1990 An implicit finite-difference scheme for the steady 3-D incompressible Navier-Stokes equations in curvilinear coordinates and its application.Proc. 3rd Japan-China Joint Conf. Fluid Mechanics (Osaka) 2: 227–234

    Google Scholar 

  • Ikohagi T, Shin B R, Daiguji H 1992 Applications of an implicit time-marching scheme to 3-D incompressible flow problem in curvilinear coordinate systems.Comput. Fluids 21: 163–175

    Article  MATH  Google Scholar 

  • Karki K C, Patankar S V 1988 Calculation procedure for viscous incompressible flow in complex geometries.Numer. Heat Transfer 14: 295–307

    Article  MATH  Google Scholar 

  • Kim J, Kline S J, Johnston J P 1980 Investigation of a reattaching turbulent shear layer: flow over a backward-facing step.Trans. ASME, J. Fluid Eng. 102: 302–308

    Google Scholar 

  • Kim J, Moin P 1985 Application of a fractional-step method to incompressible Navier-Stokes equations.J. Comput. Phys. 59: 308–323

    Article  MATH  MathSciNet  Google Scholar 

  • Kondoh T, Nagano Y 1989 Numerical investigation of three-dimensional separating and reattaching flow downstream of a backward-facing step.Proc. 3rd Int. Symp. Comput. Fluid Dynamics (Nagoya) 1: 263–270

    Google Scholar 

  • Launder B E, Spalding D B 1974 The numerical computation of turbulent flows.Comput. Methods Appl. Mech. Eng. 3: 269–289

    Article  MATH  Google Scholar 

  • MacCormack R W 1969 The effect of viscosity in hypervelocity impact cratering.AIAA paper no. 69–354

  • MacCormack R W 1982 A new method for solving the equations of compressible viscous flow.AIAA J. 20: 1275–1281

    MATH  MathSciNet  Google Scholar 

  • Nakamura Y, Takemoto Y 1985 Solutions of incompressible flows using a generalizedQUICK method.Proc. 1st Int. Symp. Comput. Fluid Dynamics (Tokyo) 2: 285–296

    Google Scholar 

  • Patankar S V 1980Numerical heat transfer and fluid flow (New York: Hemisphere)

    MATH  Google Scholar 

  • Pulliam T H, Chaussee O S 1981 A diagonal form of an implicit approximate-factorization algorithm.J. Comput. Phys. 39: 347–363

    Article  MATH  MathSciNet  Google Scholar 

  • Rogers S E, Kwak D, Kiris C 1991 Upwinding differencing scheme for the time-accurate incompressible Navier-Stokes equations.AIAA J. 29: 603–610

    Google Scholar 

  • Rosenfeld M, Kwak D, Vinokur M 1991 A fractional step solution method for the unsteady incompressible Navier-Stokes equations in generalized coordinate systems.J. Comput. Phys. 94: 102–139

    Article  MATH  Google Scholar 

  • Shin B R, Ikohagi T, Daiguji H 1991 An implicit finite-difference scheme in curvilinear coordinates for incompressible turbulent flow problems.Proc. 4th Int. Symp. Comput. Fluid Dynamics (Davis) 2: 1059–1064

    Google Scholar 

  • Shin B R, Ikohagi T, Daiguji H 1992a An unsteady implicitsmac scheme for the two-dimensional incompressible Navier-Stokes equations.Jpn. Soc. Mech. Eng. Ser. II, No. 92-2020, (to appear)

  • Shin B R, Ikohagi T, Daiguji H 1992b An implicit finite-difference scheme for solving the unsteady 3-D incompressible Navier-Stokes equations.Computational Fluid Dynamics ’92 (Amsterdam: Elsevier) 1: 457–464

    Google Scholar 

  • Shin B R, Yamamoto S, Ikohagi T, Daiguji H 1988 Fractional step finite-difference scheme for solving the incompressible Navier-Stokes equations in curvilinear coordinates.Proc. Soviet Union-Japan Symp. Comput. Fluid Dynamics (Khabarousk) 2: 91–97

    Google Scholar 

  • Shyy W, Tong S S, Correa S M 1985 Numerical recirculating flow calculation using a body-fitted coordinate system.Numer. Heat Transfer 8: 99–113

    Article  MATH  Google Scholar 

  • Steger J L, Warming R F 1981 Flux vector splitting of the inviscid gasdynamic equations with application to finite difference methods.J. Comput. Phys. 40: 263–293

    Article  MATH  MathSciNet  Google Scholar 

  • Tamura Y, Fujii K 1991 A multi-dimensional upwind scheme for the Euler equations on structured grid.Proc. 4th Int. Symp. CFD (Davis) 2: 1137–1142

    Google Scholar 

  • Tweedt D L, Schreiber H A, Starken H 1988 Experimental investigation of the performance of a supersonic compressor cascade.Trans. ASME. J. Turbomach. 110: 456–466

    Article  Google Scholar 

  • Yamamoto S, Daiguji H 1989 A numerical method for solving the unsteady compressible Navier-Stokes equations.Proc. 3rd Int. Symp. Comput. Fluid Dynamics (Nagoya) 2: 710–715

    Google Scholar 

  • Yamamoto S, Daiguji H 1991a Higher-order accuracy upwind schemes for solving the compressible Euler and Navier-Stokes equations.Proc. 4th Int. Symp. CFD (Davis) 2: 1269–1274

    Google Scholar 

  • Yamamoto S, Daiguji H 1991b Numerical methods for transonic cascade problems.Comput. Fluids 19: 461–478

    Article  Google Scholar 

  • Yamamoto S, Daiguji H 1991c Unsteady Navier-Stokes simulation of turbulent flows through a supersonic compressor cascade.Proc. First Joint ASME/JSME Fluids Eng. Conf. FED-120: 73–79

    Google Scholar 

  • Yamamoto S, Daiguji H 1992 Numerical analyses of unsteady turbulent flows through transonic turbine and compressor cascade.Comput. Fluid Dyn. J. 1: 91–103

    Google Scholar 

  • Yanenko N N 1961 On the implicit difference computing methods for solving multidimensional heat conduction equations.Izv. Uchebn. Zaved., Mat. 4: 148–157

    Google Scholar 

  • Yee H C, Harten A 1985 Implicittvd schemes for hyperbolic conservation laws in curvilinear coordinates.AIAA Paper No. 85-1513

  • Yokota J W, Caughey D A 1988LU implicit multigrid algorithm for the three-dimensional Euler equations.AIAA J. 26: 1061–1069

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Daiguji, H., Shin, B.R. Some numerical schemes using curvilinear coordinate grids for incompressible and compressible Navier-Stokes equations. Sadhana 18, 431–476 (1993). https://doi.org/10.1007/BF02744365

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02744365

Keywords

Navigation