Skip to main content
Log in

Gas particle industrial flow simulation using RANSTAD

  • Surveys In Fluid Mechanics — III
  • Published:
Sadhana Aims and scope Submit manuscript

Abstract

A turbulent gas particle finite-volume flow simulation of a representative coal classifier is presented. Typical values of the loading ratio permit a one-way coupling analysis. As a case study, the computational fluid dynamics code,ranstad, and the modelling aspects are discussed in some detail. The simulation indicates that small (≈ 30 µm) coal particles pass through the classifier to the furnace but that large (≈ 300 µm) particles are captured and remilled. The computational simulation indicates that the classifier performance can be improved by internal geometric modification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adeniji-Fashola A, Chen C P 1990 Modelling of confined fluid-particle flows using Eulerian and Lagrangian schemes.Int. J. Heat Mass Transfer 33: 691–701

    Article  Google Scholar 

  • Armfield S W, Cho N-H, Fletcher C A J 1990 Prediction of turbulence quantities for swirling flow in conical diffusers.AIAA J. 28: 453–460

    Google Scholar 

  • Bagust K, Fletcher C A J 1992 Flow behaviour in coal classifiers.Fifth Asian Congress of Fluid Mechanics, Taejon, Korea

    Google Scholar 

  • Bar-Yoseph P, Fletcher C A J 1991 On continuum modelling of gas-solid flows with application to erosion prediction. Dept. of Mechanical Engineering Report, University of Sydney, November

  • Cho N-H, Fletcher C A J 1991 Computation of turbulent conical diffuser flows using a non-orthogonal grid system.Comput. Fluids 19: 347–361

    Article  Google Scholar 

  • Cho N-H, Fletcher C A J, Srinivas K 1991 Efficient computation of wing body flows.Lecture notes in physics (Heidelberg: Springer) 371: 167–191

    Google Scholar 

  • Choi Y D, Chung M K 1983 Analysis of turbulent gas-solid suspension flow in a pipe.J. Fluids Eng. 105: 329–384

    Google Scholar 

  • Cross M, Richards C W, Knight B, Markatos N C 1988 InComputational fluid dynamics (eds) G de Vahl Davis, C A J Fletcher (Amsterdam: North-Holland)

    Google Scholar 

  • Crowe C T 1982 Review — Numerical models for dilute gas-particle flows.J. Fluids Eng. 104: 297–303

    Article  Google Scholar 

  • di Giacinto M, Sabetta F, Piva R 1982 Two-way coupling effects in dilute gas-particle flows.J. Fluids Eng. 104: 304–312

    Article  Google Scholar 

  • Fletcher C A J 1988 Computational modelling of severe gradients with mass operator constructions.Comput. Math. Appl. 16: 31–39

    Article  MathSciNet  MATH  Google Scholar 

  • Fletcher C A J 1991Computational techniques for fluid dynamics 2nd edn (Heidelberg: Springer) vols. 1 and 2

    MATH  Google Scholar 

  • Fletcher C A J, Bain J G 1991 An approximate factorisation explicit method forCFD.Comput. Fluids 19: 61–74

    Article  MATH  Google Scholar 

  • Kitchen A K 1990Flyash erosion prediction in economisers, M E (Res.) thesis, University of Sydney

  • Kitchen A K, Fletcher C A J 1990 Computational approach to the prediction of erosion in economiser tubebanks.Proc. Computational Techniques & Applications Conference-89 (eds) B J Noye, W Hogarth (New York: Hemisphere)

    Google Scholar 

  • Melville W K, Bray K N C 1979 A model of the two-phase turbulent jet.Int. J. Heat Mass Transfer 22: 647–656

    Article  MATH  Google Scholar 

  • Modaress D, Tan H, Elghobashi S 1984 Two-componentLDA measurement in a two-phase turbulent jet.AIAA J. 22: 624–630

    Article  Google Scholar 

  • Mostafa A A, Mongia H C 1988 On the interaction of particles and turbulent fluid flow.Int. J. Heat Mass Transfer 31: 2063–2075

    Article  Google Scholar 

  • Pourahmadi F, Humphrey J A C 1983 Modeling solid-fluid turbulent flows with application to predicting erosive wear.Int. J. Phys. Chem. Hydro 4: 191–219

    Google Scholar 

  • Rodi W 1976 A new algebraic relation for calculating the Reynolds stresses.Z. Angew. Math. Mech. 56: 219–222

    Article  MathSciNet  Google Scholar 

  • Roe P L 1986 Characteristic-based schemes for the Euler equations.Annu. Rev. Fluid Mech. 18: 337–365

    Article  MathSciNet  Google Scholar 

  • Schneider G E, Zedan M 1981 A modified strongly implicit procedure.Numer. Heat Transfer 4: 1–19

    Article  Google Scholar 

  • Steger J L 1978 Implicit finite-difference simulation of flow about arbitrary two-dimensional geometries.AIAA J. 16: 679–686

    MATH  Google Scholar 

  • Stone H 1968 A strongly implicit procedure for parabolic equations.SIAM J. Numer. Anal. 5: 530–558

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The commitment of the Electricity Commission of New South Wales (Pacific Power) to the exploitation of Computational Engineering for the improvement of all aspects of electricity generation is acknowledged.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fletcher, C.A.J. Gas particle industrial flow simulation using RANSTAD. Sadhana 18, 657–681 (1993). https://doi.org/10.1007/BF02744371

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02744371

Keywords

Navigation