Skip to main content
Log in

Flexible AC transmission systems: A status review

  • Recent Advances In Power Electronics And Drives
  • Published:
Sadhana Aims and scope Submit manuscript

Abstract

With the availability of high power semiconductor switches with turn-off capability, voltage source converter based controllers for power transmission system applications have become a reality. Prototypes of some second generation Flexible AC Transmission System (FACTS) controllers like TCSC and STATCON have been installed. This paper presents a review of the progress in FACTS. A generalized description of FACTS controllers is also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akagi H 1996 New trends in active filters for power conditioning.IEEE Trans. Ind. Appl. 32: 1312–1322

    Article  Google Scholar 

  • Abi Samra N C, Smith R F, McDermott T E, Chidester M B 1985 Analysis of thyristor controlled shunt SSR countermeasures.IEEE Trans. Power Apparatus Syst. 104: 584–597

    Article  Google Scholar 

  • Benko I S, Bhargava B, Rothenbuler W N 1987 Prototype NGH subsynchronous resonance damping scheme. Part II - Switching and short circuit tests.IEEE Trans. Power Syst. 12: 1040–1049

    Google Scholar 

  • Clark K, Fardanesh B, Adapa R 1995 Thyristor controlled series compensation application study-Control interaction considerations.IEEE Trans. Power Delivery 10: 1031–1037

    Article  Google Scholar 

  • Christl N, Hedin R, Johnson R, Krause P, Montoya A 1991 Power system studies and modelling for Kayenta 230 kV substation. Advanced series compensation. InFifth Int. Conf. on AC and DC Transmission London,IEE Conf. Publ. No. 345: 33–37

  • Ekanayake J B, Jenkins N 1996 A three level advanced static var compensator.IEEE Trans. Power Delivery 11: 540–545

    Article  Google Scholar 

  • Edwards C W, Nannery P R, Mattern K E, Stacey E J, Gubernick J 1988 Advanced static var generator employing GTO thyristors.IEEE Trans. Power Delivery 3: 1622–1627

    Article  Google Scholar 

  • Gronquist J F, Sethares W A, Alvarado F L, Lasseter R H 1995 Power oscillation damping strategies for FACTS devices using locally measurable quantities.IEEE Trans. Power Syst. 10: 1598–1605

    Article  Google Scholar 

  • Gyugyi L 1979 Reactive power generation and control using thyristor circuits.IEEE Trans. Ind. Appl. 15: 521–531

    Google Scholar 

  • Gyugyi L 1988 Power electronics in electrical utilities: Static var compensators.Proc. IEEE 76: 482–594

    Article  Google Scholar 

  • Gyugyi L 1992 Unified power flow control concept for flexible AC transmission systems.Inst. Elec. Eng. Proc. C139: 323–331

    Google Scholar 

  • Gyugyi L 1994 Dynamic compensation of AC transmission lines by solid state synchronous voltage sources.IEEE Trans. Power Delivery 9: 904–911

    Article  Google Scholar 

  • Gyugyi L 1995 The unified power flow controller: A new approach to power transmission control.IEEE Trans. Power Delivery 10: 1085–1099

    Article  Google Scholar 

  • Hammad A E, El-Sadek M 1984 Application of a thyristor controlled VAR compensator for damping subsynchronous oscillations in power systems.IEEE Trans. Power Apparatus Syst. 103: 198–212

    Article  Google Scholar 

  • Hingorani N G 1981 A new scheme for subsynchronous resonance damping of torsional oscillations and transient torque — Part I.IEEE Trans. Power Apparatus Syst. 100: 1852–1855

    Article  Google Scholar 

  • Hingorani N G 1988 Power electronics in electrical utilities: Role of power electronics in future power systems.Proc. IEEE 76: 481–482

    Article  Google Scholar 

  • Hingorani N G 1991 FACTS-Flexible AC transmission systems. InFifth Int. Conf. on AC and DC Transmission, LondonIEE Conf. Publ. No. 345: 1–7

  • Hingorani N G 1993 Flexible AC transmission systemsIEEE Spectrum 30: 40–45

    Article  Google Scholar 

  • Hingorani N G 1995 Custom powerIEEE Spectrum 32: 41–48

    Article  Google Scholar 

  • Hingorani N G, Bhargava B, Garrigue G F, Rodriguez G D 1987 Prototype NGH subsynchronous resonance damping scheme-Part I - Field installation and operating experience.IEEE Trans. Power Syst. 12: 1034–1039

    Article  Google Scholar 

  • Hedin R A, Stump K B, Hingorani N G 1981 A new scheme for subsynchronous resonance damping of torsional oscillations and transient torque — Part II.IEEE Trans. Power Apparatus Syst. 100: 1856–1863

    Article  Google Scholar 

  • Iravani M R, Maratukulam D 1994 Review of semiconductor controlled phase shifters for power system applications.IEEE Trans. Power Syst. 9: 1833–1839

    Article  Google Scholar 

  • Jiang Y, Ekstrom A 1995 Applying PWM to control overcurrent at unbalanced faults of force commutated voltage source converters used as static var compensators. InStockholm Power Technol. Conference, Stockholm, Sweden, pp 18–22

  • Kosterev D N, Kolodziej W J 1995 Bang-bang series capacitor transient stability.IEEE Trans. Power Syst. 10: 915–923

    Article  Google Scholar 

  • Larsen E V, Leonard D J, Miller N W, Othmann H, Paserba J J, Naumann S J 1992 Application studies for a distribution STATCON on commonwealth Edison’s power system. InProceedings of FACTS Conference, Electric Power Res. Inst. (EPRI), Boston

    Google Scholar 

  • Larsen E V, Miller N, Nilsson S, Lindgren S 1992 Benefits of GTO-based compensation systems for electric utility application.IEEE Trans. Power Delivery 7: 2056–2064

    Article  Google Scholar 

  • Larsen E V, Sanchez-Gasca J J, Chow J H 1995 Concept for design of FACTS controllers to damp power swings.IEEE Trans. Power Syst. 10: 948–956

    Article  Google Scholar 

  • Miller T J E 1982Reactive power control in electric systems (New York: John Wiley)

    Google Scholar 

  • Martins N, Lima L T G 1990 Determination of suitable location for power system stabilizers and static var compensators for damping electromechanical oscillations in large scale systems.IEEE Trans. Power Syst. 5: 1455–1469

    Article  Google Scholar 

  • Mori S, Matsuno K, Hasegawa T, Ohnishe S, Takeda M, Seto S, Murakami S, Ishiguro F 1993 Development of large static var generator using self-commutated inverter for improving system stability.IEEE Trans. Power Syst. 8: 371–377

    Article  Google Scholar 

  • Menzies R W, Zhuang Y 1995 Advanced static compensation using multilevel GTO inverter.IEEE Trans. Power Delivery 10: 732–737

    Article  Google Scholar 

  • Mihalic R, Zunko P, Povh D 1996 Improvement of transient stability using unified power flow controller.IEEE Trans. Power Delivery 11: 485–491

    Article  Google Scholar 

  • Okamato H, Kurita A, Sekine Y 1995 Method for identification of effective locations of variable impedance apparatus on enhancement of steady state stability in large scale power systemsIEEE Trans. Power Syst. 10: 1401–1407

    Article  Google Scholar 

  • Padiyar K R 1996Power system dynamics — Stability and control (Bangalore: Interline)

    Google Scholar 

  • Padiyar K R, Kulkarni A M 1997 Design of reactive current and voltage controller of static condenser.Int. J. Elect. Power Energy Syst. to appear

  • Padiyar K R, Kulkarni A M 1996 Development and evaluation of controls for unified power flow controller. InNinth National Power Systems Conference, Indian Institute of Technology Kanpur, pp 253–257

  • Putman T H, Ramey D G 1982 Theory of modulated reactance solution for subsynchronous resonance.IEEE Trans. Power Apparatus Syst. 101: 1527–1535

    Article  Google Scholar 

  • Padiyar K R, Rajashekharam P, Radhakrishnan C, Pai M A 1986 Dynamic stabilization of power systems through reactive power modulation.Elect. Mach. Power Syst. 11: 281–293

    Article  Google Scholar 

  • Padiyar K R, Uma Rao K 1997 Discrete control of series compensation for stability improvement of power system.Int. J. Elec. Power Energy Syst. 19: 311–319

    Article  Google Scholar 

  • Padiyar K R, Varma R K 1990 Static var system auxiliary controllers for damping torsional oscillations.Int. J. Elec. Power Energy Syst. 12: 271–286

    Article  Google Scholar 

  • Piwko R J, Wegner C A, Furumasu B C, Damsky B L, Eden J D 1994 The Slatt thyristor controlled series capacitor project: Design, installation, commissioning and system testing.Int. Conf. Large High Voltage Electric Systems (CIGRE), Paris, 14–104

  • Piwko R J, Wegner C A, Kinney S J, Eden J D 1996 Subsynchronous resonance performance tests of the slatt thyristor controlled series capacitor.IEEE Trans. Power Delivery 11: 1112–1119

    Article  Google Scholar 

  • Ramey D G, Kimmel D S, Dorney J W, Kroening F H 1981 Dynamic stabilizer verification tests at the San Juan station.IEEE Trans. Power Apparatus Systems 100: 5011–5019

    Article  Google Scholar 

  • Raschio P, Mittelstadt W A, Haner J F, Spee R, Enslin J H R 1995 Evaluation of dynamically controlled brake for western power system. InCIGRE 1995 Symposium on Power Electronics in Electric Power Systems, Tokyo, pp 22–24

  • Rao C S, Nagsarkar T K 1984 Half wave thyristor controlled dynamic brake to improve transient stability.IEEE Trans. Power Apparatus Syst. 103: 1077–1083

    Article  Google Scholar 

  • Rostomkolai N, Piwko R J, Larsen E V, Fischer D A, Mobarak M A, Poitras A E 1990 Subsynchronous torsional interaction with SVCs — Concepts and practical implications.IEEE Trans. Power Syst. 5: 1324–1332

    Article  Google Scholar 

  • Sabin D D, Sundaram A 1996 Quality enhances.IEEE Spectrum 33: 34–41

    Article  Google Scholar 

  • Salama M M A, Temraz H, Chikhani A Y, Bayoumi M A 1993 Fault current limiter thyristor controlled impedance.IEEE Trans. Power Delivery 8: 1518–1528

    Article  Google Scholar 

  • Sarkozi M, Gyugyi L, Bronfeld J D, Nilsson S, Damsky B 1994 Thyristor switched ZNO voltage limiter.Proc. of Int. Conf. Large High Voltage Electric Systems (CIGRE), Paris, 14–302

  • Schauder C, Gernhardt M, Stacey E, Cease T W, Edris A, Lemak T, Gyugyi L 1995 Development of ± 100 Mvar static condenser for voltage control of transmission systems.IEEE Trans. Power Delivery 10: 1486–1496

    Article  Google Scholar 

  • Schauder C, Mehta H 1993 Vector analysis and control of advanced static var compensator.Inst. Elec. Eng. Proc. C 140: 299–306

    Google Scholar 

  • Sumi Y, Harumoto Y, Hasegawa T, Yano M, Ikeda K, Matsuura T 1981 New static var control using force commutated inverters.IEEE Trans. Power Apparatus Syst. 100: 4216–4224

    Article  Google Scholar 

  • Sugimoto S, Kida J, Arita H, Fukui C, Yamagiwa T 1996 Principle and characteristics of a fault current limiter with series compensation.IEEE Trans. Power Delivery 11: 842–847

    Article  Google Scholar 

  • Urbanek J, Piwko R J, Larsen E V, Damsky B L, Furumasu B C, Mittelstadt W, Eden J D 1993 Thyristor controlled series compensation prototype installation at the 500kV Slatt substation.IEEE Trans. Power Delivery 8: 4460–4469

    Article  Google Scholar 

  • Walker L 1990 A 10 MW GTO converter for battery peaking service.IEEE Trans. Ind. Appl. 26: 63–72

    Article  Google Scholar 

  • Wasynczuk O 1981 Damping subsynchronous resonance using reactive power control.IEEE Trans. Power Apparatus Syst. 100: 1096–1104

    Article  Google Scholar 

  • Woodford D A 1996 Electromagnetic design considerations for fast acting controllers.IEEE Trans. Power Delivery 11: 1515–1521

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K R Padiyar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Padiyar, K.R., Kulkarni, A.M. Flexible AC transmission systems: A status review. Sadhana 22, 781–796 (1997). https://doi.org/10.1007/BF02745845

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02745845

Keywords

Navigation