Skip to main content
Log in

High temperature low cycle fatigue

  • Integrity Of Engineering Components
  • Published:
Sadhana Aims and scope Submit manuscript

Abstract

Fatigue at high temperature is a complex phenomenon as it is influenced by a number of time-dependent processes which become important at elevated temperatures. These processes include creep, oxidation, phase instabilities and dynamic strain ageing (DSA), acting either independently or synergistically influence fatigue behaviour, often lowering the fatigue life. Current design approaches employ linear summation of fatigue and creep damage with suitable factors on permissible damage to take care of uncertainties in interaction between cyclic and time-dependent processes. It is, therefore, important to develop a deeper understanding of the processes that occur during high temperature fatigue so that realistic life predictions could be made.

Results on the high temperature fatigue behaviour of austenitic stainless steels, ferritic steels and nickel base alloys are presented here. The important mechanisms of interaction of high temperature time-dependent processes with fatigue under various conditions are discussed in detail. Emphasis is placed on cyclic stress response, fatigue life, deformation substructure and fracture behaviour. This is followed by a review of important life prediction techniques under combined creep-fatigue loading conditions. Life prediction techniques considered here include linear damage summation, strain range partitioning, ductility exhaustion approach, frequency modified and frequency separation methods, techniques based on hysteresis energy and damage rate models, and methods based on crack-cavitation interation models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdel-Azim Metwally 1986Mechanical properties of some high temperature alloys (Alloy 800 H and Alloy 617). Ph D thesis, Cairo University

  • Abdel-Raouf H, Plumtree A, Topper T H 1973 Effects of temperature and deformation rate on cyclic strength and fracture of low carbon steel. InCyclic stress-strain behaviour: analysis, experimentation and failure prediction. ASTM STP 519, pp. 28–57

  • Antunes V T A, Hancock P 1978 AGARD Conf. Proc. 243

  • Asada Y, Mitsuhashi S 1980 Creep-fatigue interaction of type 304 stainless steel in air and vacuum. InInt. Conf. Eng. Aspects of Creep (Sheffield: Inst. Mech. Eng.) 1: 199–202

    Google Scholar 

  • ASME 1992 Boiler and Pressure Vessel Code, Section III, Case N47-14,Class I components in elevated temperature service (New York: ASME)

    Google Scholar 

  • Baaquin O H 1910 The exponential law of endurance tests.Proc. Am. Soc. Test. Mater. 10: 625–630

    Google Scholar 

  • Berling J T, Conway J B 1970 Effect of hold time on the low cycle fatigue resistance of 304 stainless steel at 1200°F.Proc. 1st Int. Conf. Pressure Vessel Tech. Part II (New York: ASME) pp. 1233–1246

    Google Scholar 

  • Bhanu Sankara Rao K 1989Influence of metallurgical variables on low cycle fatigue behaviour of type 304 stainless steel. Ph D thesis, University of Madras

  • Bhanu Sankara Rao K, Mannan S L, Rodriguez P, Schuster H, Schiffers H, Meurer H P, Nickel H 1988 Proc. Indo-German Seminar on T rends and T echniques in Modern Materials Research, IGCAR-Kalpakkam, Report No. 99c, pp. 81–92

  • Bhanu Sankara Rao K, Meurer H P, Schuster H 1988 Creep-fatigue interaction of Inconel 617 at 950°C in simulated nuclear reactor helium.Mater. Sci. Eng. A104: 37–51

    Google Scholar 

  • Bhanu Sankara Rao K, Sandhya R, Mannan S L 1993 Creep-fatigue interaction behaviour of type 308 stainless steel weld metal and type 304 stainless steel base metal.Int. J. Fatigue 15: 221–229

    Article  Google Scholar 

  • Bhanu Sankara Rao K, Schiffers H, Schuster H 1986c (Unpublished) Research Work (KFA-Julich, Germany)

    Google Scholar 

  • Bhanu Sankara Rao K, Valsan M, Sandhya R, Mannan S L 1994 (Unpublished) Research Work, Kalpakkam

  • Bhanu Sankara Rao K, Valsan M, Sandhya R, Mannan S L, Rodriguez P 1986a Grain size dependence of creep-fatigue-environment interaction in AISI 304 stainless steel.Int. Conf. on Creep (Tokyo: JSME, Inst. Mech Eng. ASME, ASTM) pp. 77–83

    Google Scholar 

  • Bhanu Sankara Rao K, Valsan M, Sandhya R, Mannan S L, Rodriguez P 1986b Dynamic strain ageing effects in low cycle fatigue.High Temp. Mater. Proc. 7: 171–177

    Google Scholar 

  • Bhanu Sankara Rao K, Valsan M, Sandhya R, Mannan S L, Rodriguez P 1989 Grain size dependence of dynamic strain ageing during low cycle fatigue in type 304 stainless steel,7th Int. Conf. Fracture, Adv. in Fracture Research, (eds) K Salama, K Ravi Chandar, D M R Taplin, P Rama Rao (London: Pergamon) 2: 1037–1044

    Google Scholar 

  • Bhanu Sankara Rao K, Valsan M, Sandhya R, Mannan S L, Rodriguez P 1990 Manifestations of dynamic strain ageing during low cycle fatigue of type 304 stainless steel.Metall. Mater. Proc. 2: 17–36

    Google Scholar 

  • Bhanu Sankara Rao K, Valsan M, Sandhya R, Mannan S L, Rodriguez P 1991 Synergistic interactions during high temperature fatigue of type 304 stainless steel — grain size dependence.Trans. Indian Inst. Met. 44: 255–270

    Google Scholar 

  • Booker M K, Majumdar S 1982 Specialists Meeting on “Structural material data” held at the Power Reactor and Nuclear Fuel Development Corporation, Tokyo, Japan

  • Bressers J 1985 Fatigue and microstructure.Proc. Int. Conf. on High Temperature Alloys and their Exploitable Potential (eds) J B Marriott, M Merz, J Nihoul, J Ward (London: Elsevier) pp. 385–410

    Google Scholar 

  • Bressers J, De Cat R, Fenske E 1983 Crack initiation and growth in high temperature low cycle fatigue. Cost 501, III Final Report EVR 8808 EN

  • Bressers J, Roth M 1983 The effect of time-dependent processes in high temperature low cycle fatigue endurance of PM Astroloy.Proc. of ASME Int. Conf. on Advances in Life Prediction Methods (eds) D A Woodford, J R Whitehead (New York: ASME) pp. 85–92

    Google Scholar 

  • Bressers J, Verhegghee B 1981Res. Mech. Lett. 1: 55

    Google Scholar 

  • Bricknell R H, Woodford D A 1981 The embrittlement of nickel following high temperature air exposure.Metall. Trans. A12: 425–433

    Google Scholar 

  • Brinkman C R 1985 High temperature time-dependent fatigue behaviour of several engineering structural alloys.Int. Metall. Rev. 30: 235–258

    Google Scholar 

  • Brinkman C R, Korth G E, Beeston J M 1974 Comparison of the strain-controlled low cycle fatigue behaviour of stainless type 304/308 weld and base metal.Int. Conf. on Creep and Fatigue in Elevated Temperature Applications (Sheffield: Inst. Mech. Eng) paper C218-73, pp. 218·1–218·11

    Google Scholar 

  • Brinkman C R, Korth G E, Hobbings R R 1972 Estimates of creep-fatigue interaction in irradiated and unirradiated austenitic stainless steels.Nucl. Technol. 16: 297–307

    Google Scholar 

  • Challenger K D, Miller A K, Brinkman C R 1981 An explanation for the effects of hold periods on the elevated temperature fatigue behaviour of 2·25 Cr-1 Mo steel.Trans. ASME, J. Eng. Mater. Technol. 103: 7–14

    Google Scholar 

  • Choudhary B K, Bhanu Sankara Rao K, Mannan S L 1991a High temperature low cycle fatigue properties of a thick-section 9 wt.% Cr-1 wt.% Mo ferritic steel forging.Mater. Sci. Eng. A148: 267–278

    Google Scholar 

  • Choudhary B K, Bhanu Sankara Rao K, Mannan S L 1991b Application of 9 Cr-1 Mo steel low cycle fatigue data in the design of fast reactor steam generator thick components.Proc. Int. Symp. on Fatigue and Fracture in Steel and Concrete Struct. (eds) A G Madhava Rao, T V S R Appa Rao (New Delhi: Oxford & IBH) 2: 883–894

    Google Scholar 

  • Coffin L F 1954 A study of the effects of cyclic thermal stresses on a ductile metal.Trans. Am. Soc. Mech. Eng. 76: 931–950

    Google Scholar 

  • Coffin L F 1963Trans. Am. Soc. Mech. Eng. 56: 339

    Google Scholar 

  • Coffin L F 1969 Predictive parameters and their application to high temperature, low cycle fatigue fracture.Proc. of 2nd Int. Conf. on Fracture. (ed.) P L Pratt (London: Chapman and Hall) pp. 643–654

    Google Scholar 

  • Coffin L F 1971 The effect of frequency on the cyclic strain and low cycle fatigue behaviour of cast Udimet 500 at elevated temperatures.Metall. Trans. 2: 3105–3113

    Google Scholar 

  • Coffin L F 1972a The effect of high vacuum on the low cycle fatigue law.Metall. Trans. 3: 1777–1788

    Article  Google Scholar 

  • Coffin L F Jr. 1972b Corrosion fatigue.Proc. Int. Conf. on Fatigue Chemistry. Mechanics and Microstructure, NACE-2, Houston, Texas (National Association of Corrosion Engineers) pp. 590–600

  • Coffin L F 1973a Fatigue at high temperature.Fatigue at elevated temperature (eds) A E Carden, A J McEvily, C H Wells ASTM STP 520, pp. 5–34

  • Coffin L F 1973bProc. Int. Conf. Fatigue 3 (Munich) p. 441

    Google Scholar 

  • Coffin L F 1976 The concept of frequency separation in life prediction for time-dependent fatigue.Symp. on Creep-Fatigue Interaction. ASME-MPC-3, pp. 349–363

    Google Scholar 

  • Coffin L F 1977 The concept of frequency separation in life prediction for time-dependent fatigue. General Electric, Report No. 76 CRD269

  • Coffin L F 1979Proc. DVC Symp. of Low Cycle Fatigue Strength and Elasto-plastic behaviour of materials Stuttgart (eds) K T Rie, E Hamback (Deutscher Verband for material prufing) pp. 73–82

  • Conway J B 1968 General electric nuclear material and propulsion operation. Report No. 1004, Cincinnati, Ohio

  • Conway J B, Stenz R H, Berling J T 1975 Fatigue, tensile and relaxation behaviour of stainless steels. TID-26135, US Atomic Energy Commission Report

  • Cook R H, Skelton R P 1979Int. Metall. Rev. 19: 199

    Google Scholar 

  • Cottrell A H 1953Philos. Mag. 44: 829

    Google Scholar 

  • Duan Z, He J, Ning Y, Dong Z 1988 Strain energy partitioning approach and its application to low cycle fatigue life prediction for some heat resistant alloys. InLow cycle fatigue (eds) H D Solomon, G R Halford, L R Kaisand, B N Leis ASTM STP 942, pp. 1133–1143

  • Duquette D J 1979 A mechanistic understanding of the effects of environment on fatigue crack initiation and propagation.Proc. Int. Conf. on Environment Sensitive Fracture of Engineering Materials (ed.) Z A Foroulis (AIME) pp. 521–537

  • Dyson B F 1982 An analysis of carbon/oxygen gas bubble formation in some nickel alloys.Acta Metall. 30: 1639–1646

    Article  Google Scholar 

  • Eckel J F 1951 The influence of frequency on the repeated bending life of acid lead.Proc. Am. Soc. Test. Mater. 51: 745–760

    Google Scholar 

  • Edmunds H G, White D J 1966 Observations of the effect of creep relaxation on high strain fatigue.J. Mech. Eng. Sci. 8: 310–321

    Article  Google Scholar 

  • Ellison E G, Patterson A T F 1976 Creep-fatigue interaction in a 1 Cr-Mo-V steel.Proc. Inst. Mech. Eng. 190: 321–350

    Google Scholar 

  • Ericsson T 1979Can. Metall. Q. 18: 177

    Google Scholar 

  • Essman U, Mughrabi H 1979 Annhilation of dislocations during tensile and cyclic deformation and limits of dislocation densities.Philos. Mag. A40: 731–756

    Google Scholar 

  • Floreen S, Raj R 1985 Environmental effects in nickel base alloys. InFlow and fracture at elevated temperatures (ed.) R Rishi (Metals Park, OH: ASM) chap. 12 pp. 383–405

    Google Scholar 

  • Frandson J O, Paton N E, Marcus H L 1974 The influence of gaseous environment on fatigue crack growth in a nickel copper alloy.Metall. Trans. A5: 1665–1661

    Google Scholar 

  • Fujita F E 1958 Dislocation theory of fracture of crystals.Acta Metall. 6: 543–551

    Article  Google Scholar 

  • Gell M, Leverant G R 1973 Mechanisms of high temperature fatigue. InFatigue at elevated temperatures (eds) A E Carden, A J McEvily, C H Wells ASTM STP 520, pp. 37–67

  • Halford G R, Hirschberg M H, Manson S S 1972 Temperature effects on the strainrange partitioning approach for creep-fatigue analysis. NASA TM X-68023

  • Halford G R, Saltsman J F 1983 Strainrange partitioning a total strain range version. NASA TM-83023

  • Halford G R, Saltsman J F, Hirschberg M H 1977 Ductility normalized strainrange partitioning life relations for creep-fatigue life predictions. NASA TM-73737

  • Hayes R W, Hayes W C 1984 A proposed model for the disappearance of serrated flow in two Fe-alloys.Acta Metall. 32: 259–267

    Article  Google Scholar 

  • Hirakawa K, Tokiwasa K, Toyama K 1978J. Soc. Mater. Sci. Jpn. 27: 948

    Google Scholar 

  • Hirschberg M H, Halford G R 1976, Use of strainrange partitioning to predict high temperature, low cycle fatigue life NASA TN D-8072

  • Hoffelner W, Melton K N, Wutbrich C 1983 On life-time prediction with the strainrange partitioning method.Fatigue Eng. Mater. Struct. 6: 77–87

    Article  Google Scholar 

  • Ilschner B 1982Mechanical and thermal behaviour of metallic materials (Bologna: Soc. Ital. Fis.) p. 188

    Google Scholar 

  • James L A, Knecht R L. 1975Metall. Trans. A6: 109

    Google Scholar 

  • Jianting G, Ranuci D, Picco E, Strocchi P M 1984 Effect of environment on the low cycle fatigue behaviour of cast nickel base superalloy IN738LC.Int. J. Fatigue 6: 95–99

    Article  Google Scholar 

  • Johnson E W, Johnson H H 1965Trans. Metall. Soc. AIME 233: 1332

    Google Scholar 

  • Kalluri S, Manson S S 1984 Time dependency of strainrange partitioning life relationships. NASA Contractor Report-174946

  • Kanazawa K 1978Trans. Nat. Res. Inst. Met. 20: 321

    Google Scholar 

  • Kanazawa K, Yamaguchi K, Nishijima S 1988 Mapping of low cycle fatigue mechanisms at elevated temperatures for an austenitic stainless steel.Low Cycle Fatigue (eds) H D Solomon, G R Halford, L R Kaisand, B N Leis ASTM STP 942, pp. 519–530

  • Kanazawa K, Yoshida S 1972 Effect of temperature and strain rate on the high temperature low cycle fatigue behaviour of austenitic stainless steels. InCreep and fatigue in elevated temperature applications (London: Inst. Mech. Eng.) 1: pp. 226·1–226·10

    Google Scholar 

  • Kempf B, Bothe K, Gerold V 1987 Damage mechanisms under creep-fatigue conditions in Alloy 800 H. InProc. 2nd Int. Conf. on Elasto-Plastic Behaviour of Materials. (ed.) K T Rie (New York: Elsevier) pp. 271–276

    Google Scholar 

  • Kubin L P, Estrin Y 1990 Evolution of dislocation densities and the critical conditions for the Portevin-Le Chatelier effect.Acta Metall. 38: 697–708

    Article  Google Scholar 

  • Leven M M 1973 Interaction of creep and fatigue for a rotor steel.Exp. Mech. 13: 353–372

    Article  Google Scholar 

  • Lloyd G J, Wareing J 1981 Life-prediction methods for combined creep-fatigue endurance.Metall. Technol. 8: 297–304

    Google Scholar 

  • Lord D C, Coffin L F 1973 Low cycle fatigue hold time behaviour of cast Rene80.Metall. Trans. 4: 1647–1654

    Article  Google Scholar 

  • Maiya P S, Majumdar S 1977 Elevated temperature low cycle fatigue behaviour of different heats of type 304 stainless steel.Metall. Trans. A8: 1651–1660

    Google Scholar 

  • Majumdar S, Maiya P S 1976a A damage equation for creep-fatigue interaction. InASME-MPC Symp. on Creep-Fatigue Interaction, MPC-3 (New York: ASME) pp. 323–335

    Google Scholar 

  • Majumdar S, Maiya P S 1976bProc. 2nd Int. Conf. on Mechanical Behaviour of Materials (Metals Park, OH: ASM) p. 924

    Google Scholar 

  • Majumdar S, Maiya P S 1979 Creep-fatigue interaction in an austenitic stainless steel.Can. Metall. Q. 18: 57–64

    Google Scholar 

  • Mannan S L 1981Influence of grain size on flow and fracture in AISI type 316 stainless steel. PhD thesis, Indian Institute of Science, Bangalore

    Google Scholar 

  • Mannan S L 1993 Role of dynamic strain ageing in low cycle fatigue.Bull. Mater. Sci. 16: 561–582

    Article  Google Scholar 

  • Manson S S 1954 Behaviour of materials under conditions of thermal stresses. Nat. Adv. Comm. Aero, Technical Note 2933

  • Manson S S 1965 Fatigue: A complex subject — some simple approximations.Exp. Mech. 5: 157–190

    Article  Google Scholar 

  • Manson S S, Halford G R 1967Proc. of Int. Conf. on Thermal and High Strain Fatigue (London: Met. Metall. Trust) p. 154

    Google Scholar 

  • Manson S S, Halford G R 1968Trans. Am. Soc. Metall. 61: 94

    Google Scholar 

  • Manson S S, Halford G R, Hirschberg M H 1971 Creep-fatigue analysis by strain-range partitioning. NASA TM X-67838

  • Manson S S, Halford G R, Oldrieve R E 1984 Report NASA, TM-83473, Lewis Research Center, Cleveland, OH

    Google Scholar 

  • Marriott D L 1992 Current trends in high temperature design.Int. J. Pressure Vessels Piping 50: 13–35

    Article  Google Scholar 

  • Marshall P 1983Fatigue at high temperature (ed.) R P Skelton (London: Elsevier) p. 259

    Google Scholar 

  • McCormick P G 1972 A model for the Portevin-Le Chatelier effect in substitutional alloys.Acta Metall. 20: 351–354

    Article  MathSciNet  Google Scholar 

  • McMahon C J, Coffin L F 1970 Mechanisms of damage and fracture in high temperature low cycle fatigue of a cast nickel base superalloy.Metall. Trans. 1: 3443–3450

    Google Scholar 

  • Meurer H P, Breitling H, Grosser E D 1984 Creep-fatigue evaluation of austenitic stainless steel for SNR 300 — present status and future efforts.Nucl. Eng. Design 83: 355–366

    Article  Google Scholar 

  • Miller D A, Hamm C D, Philips J L 1982 A mechanistic approach to the prediction of creep-dominated failure during simultaneous creep-fatigue.Mater. Sci. Eng. 53: 233–244

    Article  Google Scholar 

  • Miller D A, Mohamed F A, Langdon T G 1979 An analysis of cavitation failure incorporating cavity nucleation with strain.Mater. Sci. Eng. 40: 159–166

    Article  Google Scholar 

  • Miller D A, Priest R H, Ellison E G 1984 A review of material response and life prediction techniques under fatigue-creep loading conditions.High Temp. Mater. Proc. 6: 155–194

    Google Scholar 

  • Miner M A 1945J. Appl. Mech. A12: 159

    Google Scholar 

  • Mulford R A, Kocks U F 1979 New observation on the mechanisms of dynamic strain ageing and jerky flow.Acta Metall. 27: 1125–1134

    Article  Google Scholar 

  • Nazmy M Y 1983a High temperature low cycle fatigue of IN738 and application of strain range partitioning.Metall. Trans. A14: 449–461

    Google Scholar 

  • Nazmy M Y 1983b Effect of multiple crack propagation on the high temperature low cycle fatigue of a cast nickel base alloy.Scr. Metall. 17: 491–494

    Article  Google Scholar 

  • Nich T G, Nix W D 1981 Embrittlement of Cu due to segregation of oxygen to grain boundaries.Metall. Trans. A12: 893–901

    Google Scholar 

  • Ostergren W J 1976a Correlation of hold time effects in elevated temperature LCF using a frequency modified damage function.Symp. on ’Creep-Fatigue Interaction (ed.) R M Curran (New York: ASME-MPC) pp. 179–202

    Google Scholar 

  • Ostergren W J 1976b A damage function and associated failure equations for predicting hold time and frequency effects in elevated temperature low cycle fatigue.J. Test. Eval. 4: 327–339

    Article  Google Scholar 

  • Plumbridge W J, Ellison E G 1987 Low cycle fatigue behaviour of superalloy blade materials at elevated temperature.Mater. Sci. Technol. 3: 706–715

    Google Scholar 

  • Priest R H, Beauchamp D J, Ellison E G 1983 Damage during creep-fatigue. InProc. Conf. Advances in Life Prediction Methods (Schenectady, NY: Am. Soc. Metall.) pp. 115–121

    Google Scholar 

  • Priest R H, Ellison E G 1980 Estimation of cyclic creep damage by strain and strain rate considerations. InProc. Int. Conf. on Eng. aspects of creep (Sheffield: Inst. Mech. Eng.) pp. 185–192

    Google Scholar 

  • Priest R H, Ellison E G 1981 A combined deformation map — ductility exhaustion approach to creep-fatigue analysis.Mater. Sci. Eng. 49: 7–17

    Article  Google Scholar 

  • Quesnel D J, Tsou J C 1983 A quantitative approach to cell shuttling model.Mater. Sci. Eng. 59: 91–98

    Article  Google Scholar 

  • Raj R (ed.) 1985 Mechanisms of creep-fatigue interaction. InFlow and fracture at elevated temperatures (Metals Park, OH: ASM) pp. 215–249

    Google Scholar 

  • Reger M, Remy L 1986High temperature fatigue. Journees, Internationales de Printemps, Commission de Fatigue, SFM, Paris

    Google Scholar 

  • Reuchet J, Remy L 1983 High temperature LCF of MAR-M 509 superalloy — I: The influence of temperature on the LCF behaviour from 20 to 1100°C.Mater. Sci. Eng. 58: 19–32

    Article  Google Scholar 

  • Rie K T, Schmidt R M, Ilschner B, Nam S W 1988 A model for predicting low cycle fatigue life under creep-fatigue interaction.Low cycle fatigue (eds) H D Solomon, G R Halford, L R Kaisand, B N Leis ASTM STP 942, pp. 313–328

  • Robinson E L 1952Trans. Am. Soc. Mech. Eng. 74: 777

    Google Scholar 

  • Rodriguez P 1984 Serrated plastic flow.Bull. Mater. Sci. 6: 653–663

    Article  Google Scholar 

  • Rodriguez P 1993 Mechanistic approach to low cycle fatigue life prediction. Prof. T Ramachandran Lecture Series 1993 KREC, Suratkal

  • Rodriguez P, Bhanu Sankara Rao K 1993 Nucleation and growth of cracks and cavities under creep-fatigue interaction.Prog. Mater. Sci. 37: 403–480

    Article  Google Scholar 

  • Rodriguez P, Mannan S L, Bhanu Sankara Rao K 1989 Life prediction methods for creepfatigue conditions.Trans. Indian Inst. Met. 42: S25-S43

    Google Scholar 

  • Saltsman J F, Halford G R 1985 An update of the total-strain version of SRP, NASA TP-2499

  • Sandhya R, Bhanu Sankara Rao K, Mannan S L 1989 Low cycle fatigue and creep-fatigue interaction of Bainitic 2·25 Cr-1 Mo steel.Trans. Indian Inst. Met. 42: S217-S227

    Google Scholar 

  • Scarlin R B 1977 Effects of loading frequency and environment on high temperature fatigue crack growth in nickel base alloys, ICF-4 (ed.) D M R Taplin (New York: Pergamon) 1: 849–857

    Google Scholar 

  • Schmitt R, Scheibe W, Anderko K 1979 Creep-fatigue interaction on 1·4948 austenitic stainless steel, including irradiation effects.Proc. SMiRT-5 Berlin, Paper No. L 12/7

  • Shen H, Podlaseck S E, Kramer K I 1966 Effect of vacuum on the fatigue life of aluminium.Acta Metall. 14: 341–346

    Article  Google Scholar 

  • Sidey D, Coffin L F Jr 1979 Low cycle fatigue damage mechanisms at high temperature. InProc. Symp. Fatigue mechanisms (ed.) J T Fong ASTM STP 675, pp. 528–568

  • Skelton R P 1978 Environmental crack growth in 0·5 Cr-Mo-V steel during isothermal high strain fatigue and temperature cycling.Mater. Sci. Eng. 35: 287–298

    Article  Google Scholar 

  • Sleeswyk A W 1958 Slow strain hardening of ingot iron.Acta Metall. 6: 598–603

    Article  Google Scholar 

  • Smith H H, Shahinian P, Achter M R 1969Trans. Metall. Soc. AIME 245: 947

    Google Scholar 

  • Solomon H D, Coffin L F 1973 Effects of frequency and environment on fatigue crack growth in A286 at 1100°F. InFatigue at elevated temperatures ASTM STP 520, pp. 112–122

  • Srinivasan V S, Sandhya R, Bhanu Sankara Rao K, Mannan S L, Raghavan K S 1991 Effects of temperature on the low cycle fatigue behaviour of nitrogen alloyed type 316L stainless steel.Int. J. Fatigue 13: 471

    Article  Google Scholar 

  • Swindeman R W, Strizak J P 1982 ORNL TN-8392, Oak Ridge, TN

  • Taplin D M R, Tang N Y, Liepholz H H E 1984 On fatigue-creep-environment interaction and the feasibility of fatigue maps.Proc. 6th Int. Conf. on Fracture. Advances in Fracture Research (eds) S R Valluri, D M R Taplin, P Rama Rao, J F Knott, R Dubey, vol 1: pp. 127–142

  • Taplin D M R, Topper T H, Tang N Y 1983Proc. ICF Int. Symp. on Fracture Mechanics, Beijing

  • Teranishi H, McEvily A J 1980 On fatigue crack initiation and propagation at elevated temperature.Proc. of 5th Int. Conf. on Fracture, ICF5, Adv. Fracture Research (ed.) O Francois (Cannes, France: Pergamon) 5: 2439–2447

    Google Scholar 

  • Thompson N, Wadsworth M J, Louat N 1955 The origin of fatigue fracture in copper.Philos. Mag. 1: 113–126

    Article  Google Scholar 

  • Tomkins B 1968 Fatigue crack propagation — An analysis.Philos. Mag. 18: 1041–1066

    Article  Google Scholar 

  • Tomkins B 1975 The development of fatigue crack propagation models for engineering applications at elevated temperatures.Trans ASME, J. Eng. Mater. Technol. 97: 289–297

    Google Scholar 

  • Tomkins B 1983 Life prediction at elevated temperatures.Trans ASME, J. Pressure Vessel Technol. 105: 269–272

    Article  Google Scholar 

  • Tomkins B, Wareing J 1977 Elevated temperature fatigue interaction in engineering materials.Metall. Sci. 11: 414–424

    Google Scholar 

  • Tsuzaki K, Hori T, Maki T, Tanura I 1983 Dynamic strain ageing during during fatigue deformation in type 304 austenitic stainless steel.Mater. Sci. Eng. 61: 247–260

    Article  Google Scholar 

  • Valsan M 1991Some aspects of deformation and fracture in low cycle fatigue of a Nimonic PE-16 Superalloy. Ph D thesis, Indian Institute of Science, Bangalore

    Google Scholar 

  • Valsan M, Choudhary B K, Bhanu Sankara Rao K, Mannan S L, Rodriguez P 1988 Internal Report MDD/71·4/88/01, Kalpakkam

  • Valsan M, Parameswaran P, Bhanu Sankara Rao K, Vijayalakshmi M, Mannan S L, Shastry D H 1992 High temperature low cycle fatigue behaviour of a NIMONIC PE-16 superalloy — Correlation with deformation and fracture.Metall. Trans. A23: 1751–1761

    Google Scholar 

  • Valsan M, Sastry D H, Bhanu Sankara Rao K, Mannan S L 1994 Effect of strain rate on the high temperature low cycle fatigue properties of a Nimonic PE-16 Superalloy.Metall. Mater. Trans. A25: 159–171

    Article  Google Scholar 

  • Van den Beukel A, Kocks U F 1982 The strain dependence of static and dynamic strain ageing.Acta Metall. 30: 1027–1041

    Article  Google Scholar 

  • Venkadesan S 1991Development and characterisation of the tensile deformation behaviour of a titanium modified austenitic stainless steel. Ph D thesis, Indian Institute of Technology, Madras

    Google Scholar 

  • Viswanathan R 1989Damage mechanisms and life assessment of high temperature components (Metals Park, OH: ASM) chap. 4, pp. 111–182

    Google Scholar 

  • Wareing J 1975 Fatigue crack growth in a type 316 stainless steel and a 20 pct Cr/25 pct Ni/Nb stainless steel at elevated temperatures.Metall. Trans. A6: 1367–1377

    Google Scholar 

  • Wareing J 1977 Creep-fatigue interaction in austenitic stainless steels.Metall. Trans. A8: 711–721

    Google Scholar 

  • Wareing J 1981 Creep-fatigue behaviour of four casts of type 316 stainless steel.Fatigue Eng. Mater. Struct. 4: 131–145

    Article  Google Scholar 

  • Wareing J 1988 Influence of material microstructure on low cycle fatigue failure, with particular reference to austenitic steel. InLow cycle fatigue (eds) H D Solomon, G R Halford, L R Kaisan and B N Leis ASTM STP 942, pp. 711–727

  • Wareing J, Vaughan H G, Tomkins B 1980 Mechanisms of elevated temperature fatigue and failure in type 316 stainless steel. InCreep-Fatigue-Environment Interaction Proc. TMS-AIME Symp. Fall Meeting (eds) R M Pelloux, N S Stoloff pp. 129–150

  • Wells C H, Sullivan C P 1969 Interactions between creep and low cycle fatigue in Udimet 700 at 1400°F. InFatigue at high temperature, ASTM STP 459, pp. 59–74

  • Wilson D V, Tromans J K 1970 Effects of strain ageing on fatigue damage in low carbon steel.Acta Metall. 18: 1197–1208

    Article  Google Scholar 

  • Wood D S, Baldwin A B, Williamson K 1979 The creep/fatigue behaviour of 9 Cr steel at 525°C. Proc. IAEA Meet on ‘Time and Load Dependent Degradation of Pressure Boundary Materials’, Report IWG-RRPC-79/2 (Innsbruck), pp. 88–101

  • Wood D S, Wynn J, Austin C, Green J G 1988 A ductility exhaustion evaluation of some long term creep/fatigue tests on austenitic steel.Fatigue Fracture Eng. Mater. Struct. 11: 371–381

    Article  Google Scholar 

  • Yamaguchi K, Kanazawa K, Yoshida S 1978 Crack propagation in low cycle fatigue of type 316 stainless steel at temperatures below 600°C observed by scanning electron microscopy.Mater. Sci. Eng. 33: 175–181

    Article  Google Scholar 

  • Yoo M H, Trinkaus H 1983 Crack and cavity nucleation at interfaces during creep.Metall. Trans. A14: 547–593

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodriguez, P., Mannan, S.L. High temperature low cycle fatigue. Sadhana 20, 123–164 (1995). https://doi.org/10.1007/BF02747287

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02747287

Keywords

Navigation