Skip to main content
Log in

Studies on fatigue crack growth for airframe structural integrity applications

  • Integrity Of Engineering Components
  • Published:
Sadhana Aims and scope Submit manuscript

Abstract

A review is made of efforts at the National Aerospace Laboratories in the development of fatigue crack growth prediction technology for airframe applications. The research was focused on extension of rainflow techniques for crack growth analysis and development of accelerated crack growth calculation methods for spectrum loading. Fatigue crack closure forms a crucial element of modelling and fractographic techniques were developed for its study. These, combined with binary coded event registration enabled crack growth and closure mapping for part-through cracks in metallic materials. Experimental research on short cracks at notches led to discovery of the hysteretic nature of crack closure, which explains well-known history-sensitive local mean stress effects in notch root fatigue. Optical fractography of failures obtained under simulated service conditions revealed that short cracks do not exhibit any more scatter than long cracks at comparable growth rates. The nature of multi-site crack initiation and growth of small cracks at notches was investigated and the effort extended to lug joints that are widely used in airframe applications. Results from this work suggest the possibility of modelling crack growth from a size smaller than 50 microns through to failure, thereby accounting for a major fraction of total life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anandan K, Sunder R 1987 Closure of part through cracks at the notch root.Int. J. Fatigue 9: 217–222

    Article  Google Scholar 

  • Ashbaugh N E, Dattaguru B G, Khobeib M, Nicholas T, Prakash R V, Seshadri B, Sunder R 1994 Experimental and finite element study of crack closure Parts 1 & 2.J. Fatigue Fracture Eng. Mater. Struct (submitted)

  • Christensen R H 1959Metal fatigue (New York: McGraw-Hill)

    Google Scholar 

  • Chang J B, Hudson C M (eds) 1981 Methods and models for predicting fatigue crack growth under spectrum loading. ASTM STP 748

  • de Koning A U 1981 A simple crack closure model for prediction of fatigue crack growth rates under variable amplitude loading. ASTM STP 743 pp. 384–412

  • Dougherty D J, de Koning A U, Hillberry B M 1992 Modeling high crack growth rate under variable amplitude loading. ASTM STP 1122 pp. 214–233.

  • Dowling N E, Brose W R, Wilson W K 1977 Notched member fatigue life predictions by the local strain approach.Fatigue under complex loading: Analyses and experiments (Warrendale, PA: Society of Automotive Engineers) vol. AE-6, pp. 55–84

    Google Scholar 

  • Dowling N E, Khosrovaneh A K 1989 Simplified analysis of helicopter fatigue loading spectra ASTM STP 1006 pp. 150–171

  • Elber W 1971 The significance of fatigue crack closure (Philadelphia: American Society for Testing and Materials) ASTM STP 486, p. 230

    Google Scholar 

  • Elber W 1976 Equivalent constant-amplitude concept for crack growth under spectrum loading. ASTM STP 595 pp. 236–250

    Google Scholar 

  • Endo T, Mitsunaga K, Nakagawa H 1967 Fatigue of metals subjected to varying stress prediction of fatigue lives. Paper presented at Kyushu District Meeting of the Japanese Society of Mechanical Engineers, JSME, Kyushu

    Google Scholar 

  • Lincoln J W, 1994 Overview of the structural integrity process, an assessment of fatigue damage and crack growth prediction techniques. AGARD Report 797, Paper LP

  • Manson S S, Freche J C, Ensign, C R 1966 Application of a double linear damage rule to cumulative fatigue. Fatigue crack propagation. ASTM STP 415, pp. 384–412

  • Miner M A 1945 Cumulative damage in fatigueTrans, ASME, J. Appl. Mech. 12: A159–164

    Google Scholar 

  • Morrow J 1968 Fatigue properties of metals. Fatigue design handbook Soc. of Automotive Eng. §3·2

  • Neuber H 1961 Theory of stress concentration for shear-strained prismatical bodies with arbitrary nonlinear stress-strain law.Trans. ASME, J. Appl. Mech. 28: 544–550

    MATH  MathSciNet  Google Scholar 

  • Newman J C 1981 A crack closure model for predicting fatigue crack growth under aircraft spectrum loading. ASTM STP 748 pp. 53–84

    Google Scholar 

  • Newman J C, Edwards P R 1988 Short crack growth behaviour in an aluminum alloy — An AGARD cooperative test programme. AGARD Report 732

  • Newman J C Jr, Phillips E P, Swain M H, Everett R A Jr, 1992 Fatigue mechanics: An assessment of a unified approach to life prediction. Advances in fatigue lifetime predictive techniques (eds) M R Michell, R W Landgraf, ASTM STP 1122 pp. 5–27

  • Pelloux R M N, Faral M, McGee W M 1980 Fractographic measurements of crack tip closure.Fracture Mechanics: Twelfth Conf. ASTM STP 700, pp. 35–48

  • Poe C C 1971 Fatigue crack propagation in stiffened panels. ASTM STP 486, pp. 79–97

    Google Scholar 

  • Prakash R V, Sunder R, Mitchenko E I 1994 A study of naturally initiating notch root fatigue cracks under spectrum loading. NAL Project Document SN 9406. National Aerospace Laboratories Bangalore

  • Raju K N 1980Energy balance considerations in ductile fracture and fatigue crack growth, PhD thesis, Indian Institute of Science, Bangalore

    Google Scholar 

  • Ritchie R O, Suresh S 1982 Some considerations on fatigue crack closure induced by fatigue fracture morphology.Metall. Trans A13: 937–940

    Google Scholar 

  • Schijve J 1967 Significance of fatigue cracks in micro-range and macro-range. Fatigue crack propagation. ASTM STP 415, pp. 415–459

  • Schijve J 1974 Fatigue damage accumulation and incompatible crack front orientationEng. Fracture Mech. 6: 245–252

    Article  Google Scholar 

  • Schijve J 1979 Prediction methods for fatigue crack growth in aircraft material. Report LR-282, Delft University of Technology, Delft

  • Schuetz W 1989 Standardised stress-time histories — An overview. (eds) J M Potter, R T Watanabe, ASTM STP 1006, pp. 3–16

  • Sunder R 1983 Binary coded event registration on fatigue fracture surfaces.Proc. SEECO’83 (ed) B Dabell (London: Society of Environmental Engineers) p. 197

    Google Scholar 

  • Sunder R 1985 System for automated crack growth testing under random loading.Int. J. Fatigue 7: 3–12

    Article  Google Scholar 

  • Sunder R 1989 Compilation of procedures for fatigue crack propagation testing under complex load sequences. (eds) J M Potter R T Watanabe, ASTM STP 1006 pp. 211–230

  • Sunder R 1991 Notch root crack closure under cyclic inelasticity. Project Document PDST 9132 National Aeronautical laboratory (Also 1993J. Fatigue Fracture Eng. Mater. Struct.) 16: 677–692

    Article  Google Scholar 

  • Sunder R 1992a Rainflow applications in accelerated cumulative fatigue analysis.The rainflow method in fatigue (eds) Y Murakami (Oxford: Butterworth Heinemann) pp. 67–76

    Google Scholar 

  • Sunder R 1992b Near-threshold fatigue crack growth prediction under spectrum loading (eds) M R Mitchell, R W landgraf, pp. 161–175

  • Sunder R 1992c Contribution of individual load cycles to crack growth under aircraft spectrum loading (eds) M R Mitchell, R W Landgraf, ASTM STP 1122, pp. 176–190

  • Sunder R 1993 Contribution of individual spectrum load cycles to damage in notch root crack initiation.Short and long crack growth (eds) M R Mitchell, R W Landgraf, ASTM STP 1211, pp. 19–29

  • Sunder R, Dash P K 1982 Measurement of fatigue crack closure through electron microscopy.Int. J. Fatigue 4: 97–105

    Article  Google Scholar 

  • Sunder R, Prakash R V 1994 A study of fatigue crack growth in lugs under spectrum loading. Project Document SN 9407. National Aerospace Laboratories Bangalore (submitted for publication in ASTM STP).

  • Sunder R, Prakash R V, Mitchenko E I 1993a Fractographic study of notch fatigue crack closure and growth rates (eds) J E Masters, L N Gilbertson, ASTM STP 1203 pp. 113–131

  • Sunder R, Prakash R V, Mitchenko E I 1993b Calculation of spectrum load notch root crack growth rate under elastic and inelastic conditions. (eds) M R Mitchell, R W Landgraf (Philadelphia: American Society for Testing and Materials) ASTM STP 1211, pp. 30–44

    Google Scholar 

  • Sunder R, Prakash R V, Mitchenko E I 1994 Growth of artificially and naturally initiating notch root cracks under FALSTAFF spectrum loading. AGARD Report 797, Paper 10

  • Sunder R, Seetharam S A, Bhaskaran T 1984 Cycle counting for fatigue crack growth analysis.Int. J. Fatigue 6: 147–156

    Article  Google Scholar 

  • Sunder R, Venkatesh C S 1990 Dedicated microprocessor based controller for fatigue testing. (eds) A A Braun, N E Ashbaugh, F M Smith. ASTM STP 1092, pp. 68–82

  • Suresh S, Ritchie R O 1982 A geometric model for fatigue crack closure induced by fracture surface roughness.Metall. Trans

  • Suresh S, Zamiski G F, Ritchie R O 1981 Oxide induced crack closure: An explanation for near threshold corrosion fatigue crack growth behavior.Metall. Trans., A12: 1435–1443

    Google Scholar 

  • Topper T H, Sandor B I 1970 Effects of mean stress and prestrain on fatigue damage summation. Effects of environment and complex load history on fatigue life ASTM STP 462, pp. 93–104

  • Vormwald M, Heuler P, Seeger T 1992 A fracture mechanics based model for cumulative damage assessment as part of fatigue life prediction. ASTM STP 1122, pp. 28–43

    Google Scholar 

  • Wetzel R M 1971A method for fatigue damage analysis, Ph D thesis, Department of Civil Engineering, Univ. of Waterloo, Ontario

    Google Scholar 

  • Zuidema J, Blaauw H S 1988 Slant fatigue crack growth in Al-2024 sheet material.Eng. Fracture Mech. 29: 401–413

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The work described in this paper enjoyed the strong support of Dr S R Valluri, Prof R Narasimha and Dr K N Raju. Financial support for the effort was provided by Aeronautical Research & Development Board, Aeronautical Development Agency and Department of Science and Technology.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sunder, R. Studies on fatigue crack growth for airframe structural integrity applications. Sadhana 20, 247–285 (1995). https://doi.org/10.1007/BF02747293

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02747293

Keywords

Navigation