Skip to main content
Log in

The central limit theorem for Carleman’s equation

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

The purpose of this paper is to discuss the analogy between the law of large numbers and the central limit theorem of classical probability theory on the one hand and the hydrodynamical approximations in the statistical mechanics of gases on the other. The chief illustration is provided by Carleman's model [2] for which the central limit approximation is a kind of non-linear Brownian motion regulated by ∂n/∂t=(n'/n).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. L. Bhatnagar, E. P. Gross and M. Krook,A model for collision processes in gases, Phys. Rev.94 (1954), 511–525.

    Article  MATH  Google Scholar 

  2. T. Carleman,Problèmes Mathématiques dans la Théorie Cinétique des Gaz, Almqvist-Wiksells, Uppsala, 1957.

    MATH  Google Scholar 

  3. R. Courant and K. Friedrichs,Supersonic Flow and Shock Waves, Interscience-Wiley, New York, 1948.

    MATH  Google Scholar 

  4. M. Crandall and T. Liggett,Generation of semi-groups of nonlinear transformations on general Banach spaces, Amer. J. Math.93 (1971), 265–298.

    Article  MATH  MathSciNet  Google Scholar 

  5. G. Ford and G. E. Uhlenbeck,Lectures in Statistical Mechanics, Providence, R.I., 1963.

  6. S. K. Godunov and U. M. Sultangazin,On discrete models of the kinetic Boltzmann equation, Uspehi Mat. Nauk26 (1971), 3–52; Russian Math. Surveys26 (1971), 1–56.

    MATH  MathSciNet  Google Scholar 

  7. S. Goldstein,On diffusion by discontinuous movements, and on the telegraph equation, Quart. J. Mech. Appl. Math.4 (1951), 129–156.

    Article  MATH  MathSciNet  Google Scholar 

  8. R. Z. Has'minskii and A. M. Il'in,On equations of Brownian motion, Teor. Verojatnost. i Primenen.9 (1964), 421–444.

    MathSciNet  Google Scholar 

  9. S. Kamenomostskaya,The asymptotic behaviour of the solution of the filtration equation, Israel J. Math.14 (1973), 76–87.

    Article  MATH  MathSciNet  Google Scholar 

  10. I. I. Kolodner,On the Carleman's model for the Boltzmann's equation and its generalizations, Ann. Mat.63 (1963), 11–32.

    Article  MATH  MathSciNet  Google Scholar 

  11. H. A. Kramers,Brownian motion in a field of force and the diffusion model of chemical reactions, Physics7 (1940), 284–304.

    MATH  MathSciNet  Google Scholar 

  12. T. G. Kurtz,Convergence of sequences of semi-groups of nonlinear operators with an application to gas kinetics, Trans. Amer. Math. Soc.186 (1973), 259–272.

    Article  MathSciNet  Google Scholar 

  13. L. Landau and E. Lifshitz,Fluid Mechanics, Addison-Wesley, Reading, Mass., 1959.

    Google Scholar 

  14. H. P. McKean,A class of Markov processes associated with nonlinear parabolic equations, Proc. Nat. Acad. Sci. U.S.A.56 (1966), 1907–1911.

    Article  MATH  MathSciNet  Google Scholar 

  15. H. P. McKean,An exponential formula for solving Boltzmann's equation for a Maxwellian gas, J. Combinatorial Theory2 (1967), 358–382.

    Article  MATH  MathSciNet  Google Scholar 

  16. H. P. McKean,Stochastic Integrals, Academic Press, New York, 1969.

    MATH  Google Scholar 

  17. E. NelsonDynamical Theories of Brownian Motion, Princeton, N.J., 1967.

  18. L. Nirenberg,On elliptic partial differential equations, Ann. Scuola Norm. Sup. Pisa13 (1959), 115–162.

    MathSciNet  Google Scholar 

  19. M. Shilder,Another set of axioms for classical gas dynamics, J. Math. Phys.13 (1972), 813–821.

    Article  Google Scholar 

  20. G. I. Taylor,Diffusion by continuous movements, Proc. London Math. Soc.20 (1921/2), 196–212.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Research supported by the National Science Foundation under NSF Grant NSF-GP-37069X1.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McKean, H.P. The central limit theorem for Carleman’s equation. Israel J. Math. 21, 54–92 (1975). https://doi.org/10.1007/BF02757134

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02757134

Keywords

Navigation