Skip to main content
Log in

Bradyon-luxon symmetry

  • Published:
Foundations of Physics Letters

Abstract

We propose a spacetime scheme representing the union of the real and non-real spacetime as a possible geometrical framework for Caldirola’s idea, that the bradyonic motion can be regarded as a light-like motion in an additional extra space. The playground of all physical processes is the union space. However, the physical processes in union space are differently projected on the real and non-real spacetime. The waves linked with luxons in union space are projected on the real spacetime so that they propagate here always with the velocity of light. The waves linked with bradyons in union space are projected on the non-real spacetime so that they propagate here with the velocity of light. The wave linked with a bradyon in union space, which is projected on the real spacetime, is here described by the Schroedinger and Dirac equations. There is proposed a symmetry which demands that the physical world is in its law the same whether it is seen from real or non-real spacetime. We discuss some consequences of this symmetry in the theory of elementary particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. E. Hagston and I. D. Cox,Found. Phys. 15, 773 (1985),

    Article  ADS  MathSciNet  Google Scholar 

  2. V. Gorini,Comm. Math. Phys. 21, 150 (1971).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  3. B. S. Rajput and O. P. S. Cox,Phys. Lett B 113, 183 (1982).

    Article  ADS  Google Scholar 

  4. I. S. Gradshtein and M. Ryzhik,Tables of Integrals, Series and Products (Academic, New York, 1980).

    Google Scholar 

  5. E. Jahnke, F. Emde and F. Lösch,Tafeln höhere Funktionen (Teubner. Stuttgart, 1960).

    Google Scholar 

  6. D. Iwanenko and A. Sokolow,Klassische Feldtheorie (Akademie, Berlin, 1953).

    MATH  Google Scholar 

  7. W. H. Inskeep,Z. Naturforsch. 43a, 695 (1988).

    MathSciNet  Google Scholar 

  8. J. D. Edmonds,Found. Phys. 3, (1973);8, 303 (1978).

    Google Scholar 

  9. H. C. Corben, E. Recami, ed., inTachyons, Monopols, and Related Topics (North-Holland, Amsterdam, 1978), p.31.

    Google Scholar 

  10. V. Majerník,Am. J. Phys. 54, 538 (1986).

    Article  ADS  Google Scholar 

  11. A. O. Barut,Phys. Lett. A 67, 67 (1978).

    Article  MathSciNet  ADS  Google Scholar 

  12. O. M. Bilaniuk and E. C. G. Sudarshan,Nature 223, 386 (1969).

    Article  ADS  Google Scholar 

  13. H. Sallhofer,Z. Naturf. 43a, 1039 (1988).

    Google Scholar 

  14. A. A. Coley,Phys. Rev. D 38 2927 (1988).

    Article  ADS  Google Scholar 

  15. E. Schroedinger,Ann. Phys. (Leipzig) 79 (Ser.4), 489 (1926).

    ADS  Google Scholar 

  16. E. Schroedinger,Ann. Phys. (Leipzig) 79, 277 (1911).

    Google Scholar 

  17. K. V. L. Sama,Int. J. Mod. Phys. A 10, 767 (1995).

    Article  ADS  Google Scholar 

  18. J. Bernabeu,Nucl. Phys. B 28, 1 (1992).

    Google Scholar 

  19. J. D. Vergados,Phys. Rep. 133, 1 (1988).

    Article  ADS  Google Scholar 

  20. J. Ellis,Phil. Trans. Roy. Soc. London A 304, 69 (1982).

    Article  ADS  Google Scholar 

  21. E. C. G. Sudarshan,Phys. Rev. D 1, 2473 (1970).

    MathSciNet  Google Scholar 

  22. G. Feinberg,Phys. Rev. 159, 1089 (1967).

    Article  ADS  Google Scholar 

  23. V. S. Olkhovsky and E. Recami,Phys. Rep. 214, 339 (1992).

    Article  ADS  Google Scholar 

  24. V. S. Olkhovsky, E. Recami, F. Raciti, and A.K. Zaichenko,J. Phys. I. France 5, 1351 (1995).

    Article  Google Scholar 

  25. E. Recami and R. Mignani,Nuovo Cimento 4, 209 (1974).

    Google Scholar 

  26. E. Recami,Nuovo Cimento 9, N.6 (1986).

  27. R. Mignani et al.,Lett. Nuovo Cimento 16, 449 (1976).

    Article  MathSciNet  Google Scholar 

  28. E. A. Cole,Phys. Lett. A 75, 29 (1979);Phys. Lett. A 76, 371 (1980);J. Phys. A 13, 109 (1980);Nuovo Cimento A 60, 1 (1980);Nuovo Cimento B 85 105 (1985).

    Article  ADS  Google Scholar 

  29. A. O. Barut, G.D. Maccarrone, and E. Recami,Nuovo Cimento A 71, 509 (1982), and references therein.

    MathSciNet  ADS  Google Scholar 

  30. J. D. Edmonds,Found. Phys. 8, 303 (1978).

    Article  ADS  MathSciNet  Google Scholar 

  31. J. L. Synge,Comm. Dublin Inst. Adv. Stud., Ser. A, No. 21 (1972).

  32. I. L. Kantor and A. S. Solodownikov,Hyperkomplexe Zahlen (Teubner, Leipzig, 1978).

    MATH  Google Scholar 

  33. K. Imaeda,Nuovo Cimento B 50, 271 (1979).

    Article  MathSciNet  ADS  Google Scholar 

  34. P. Caldirola and E. Recami,Epistologia (Geneva) 1, 263 (1978).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Majerník, V. Bradyon-luxon symmetry. Found Phys Lett 10, 357–370 (1997). https://doi.org/10.1007/BF02764106

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02764106

Key words

Navigation