Skip to main content
Log in

A local version of the two-circles theorem

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

A necessary and sufficient condition is given so that in a domain Ω there are no functions whose average over all balls contained in Ω of radiir 1,r 2 vanish except the zero function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. A. Berenstein,An inverse spectral theorem and its relation to the Pompeiu problem, J. Analyse. Math.37 (1980), 128–144.

    MATH  MathSciNet  Google Scholar 

  2. C. A. Berenstein,Spectral synthesis on symmetric spaces, Contemp. Math., to appear.

  3. C. A. Berenstein and M. A. Dostal,On convolution equations I, inL’anal. harm. dans le domaine complexe, Springer Lecture Notes in Math.336, 1973, pp. 79–94.

    MathSciNet  Google Scholar 

  4. C. A. Berenstein and D. C. Struppa,Solutions of convolution equations in convex sets, Am. J. Math., to appear.

  5. C. A. Berenstein and B. A. Taylor,A new look at interpolation theory for entire functions of one variable, Adv. in Math.33 (1979), 109–143.

    Article  MATH  MathSciNet  Google Scholar 

  6. C. A. Berenstein and B. A. Taylor,Interpolation problems in C n with applications to harmonic analysis, J. Analyse Math.38 (1980), 188–254.

    MATH  MathSciNet  Google Scholar 

  7. C. A. Berenstein and P. C. Yang,An inverse Neumann problem, to appear.

  8. C. A. Berenstein and A. Yger,Le problème de la deconvolution, J. Func. Anal.54 (1983), 113–160.

    Article  MATH  MathSciNet  Google Scholar 

  9. C. A. Berenstein and L. Zalcman,Pompeiu’s problem on symmetric spaces, Comment. Math. Helv.55 (1980), 593–621.

    Article  MATH  MathSciNet  Google Scholar 

  10. L. Brown, B. M. Schreiber and B. A. Taylor,Spectral synthesis and the Pompeiu problem, Ann. Inst. Fourier23 (1973), 125–154.

    MathSciNet  Google Scholar 

  11. C.-C. Chou,La transformation de Fourier complexe et l’equation de convolution, Springer-Verlag, Berlin, 1973.

    MATH  Google Scholar 

  12. A. M. Cormack and E. T. Quinto,A Radon transform on spheres through the origin in R n and applications to the classical Darboux equation, Trans. Am. Math. Soc.260 (1980), 575–581.

    Article  MATH  MathSciNet  Google Scholar 

  13. L. Ehrenpreis,Solution of some problems of division, part IV, Am. J. Math.82 (1960), 522–588.

    Article  MATH  MathSciNet  Google Scholar 

  14. L. Hörmander,The Analysis of Linear Partial Differential Operators, Vols. I and II, Springer-Verlag, Berlin, 1983.

    Google Scholar 

  15. J. P. Kahane,Sur quelques problèmes d’unicité et de prolongement, Ann. Inst. Fourier5 (1953–54), 39–130.

    MathSciNet  Google Scholar 

  16. B. M. Levitan and I. S. Sargsjan,Introduction to spectral theory, Transl. Math. Monog. AMS39 (1975).

  17. L. Schwartz,Théorie générale des fonctions moyenne-périodiques, Ann. of Math.48 (1947), 857–929.

    Article  MathSciNet  Google Scholar 

  18. J. D. Smith,Harmonic analysis of scalar and vector fields in R n, Proc. Camb. Phil. Soc.72 (1973), 403–416.

    Article  Google Scholar 

  19. G. Watson,Theory of Bessel Functions, Cambridge University Press, London/New York, 1966.

    MATH  Google Scholar 

  20. L. Zalcman,Analyticity and the Pompeiu Problem, Arch. Rat. Mech. Anal.47 (1972), 237–254.

    Article  MATH  MathSciNet  Google Scholar 

  21. L. Zalcman,Offbeat integral geometry, Am. Math. Monthly87 (1980), 161–175.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Partially supported by NSF grant DMS-8401356 and by NSF grant OJR 85-OV-108 through the Systems Research Center of the University of Maryland.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berenstein, C.A., Gay, R. A local version of the two-circles theorem. Israel J. Math. 55, 267–288 (1986). https://doi.org/10.1007/BF02765026

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02765026

Keywords

Navigation