Skip to main content
Log in

Extremal problems and isotropic positions of convex bodies

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

LetK be a convex body in ℝn and letW i (K),i=1, …,n−1 be its quermassintegrals. We study minimization problems of the form min{W i (TK)|T ∈ SL n } and show that bodies which appear as solutions of such problems satisfy isotropic conditions or even admit an isotropic characterization for appropriate measures. This shows that several well known positions of convex bodies which play an important role in the local theory may be described in terms of classical convexity as isotropic ones. We provide new applications of this point of view for the minimal mean width position.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. D. Alexandrov,On the theory of mixed volumes of convex bodies, I, Extension of certain concepts in the theory of convex bodies (in Russian), Matematicheskii Sbornik N.S.2 (1937), 947–972.

    Google Scholar 

  2. A. D. Alexandrov,On the surface area functions of convex bodies (in Russian), Matematicheskii Sbornik N.S.6(48) (1939), 167–174.

    Google Scholar 

  3. K. M. Ball,Volumes of sections of cubes and related problems, Lecture Notes in Mathematics1376, Springer-Verlag, Berlin, 1989, pp. 251–260.

    Google Scholar 

  4. K. M. Ball,Shadows of convex bodies, Transactions of the American Mathematical Society327 (1991), 891–901.

    Article  MATH  MathSciNet  Google Scholar 

  5. K. M. Ball,Volume ratios and a reverse isoperimetric inequality, Journal of the London Mathematical Society (2)44 (1991), 351–359.

    Article  MATH  MathSciNet  Google Scholar 

  6. K. M. Ball,Ellipsoids of maximal volume in convex bodies, Geometriae Dedicata41 (1992), 241–250.

    Article  MATH  MathSciNet  Google Scholar 

  7. F. Barthe,On a reverse form of the Brascamp-Lieb inequality, Inventiones Mathematicae134 (1998), 335–361.

    Article  MathSciNet  Google Scholar 

  8. J. Bokowski and E. Heil,Integral representations of quermassintegrals and Bonnesen-style inequalities, Archiv der Mathematik47 (1986), 79–89.

    Article  MATH  MathSciNet  Google Scholar 

  9. J. Bourgain, J. Lindenstrauss and V.D. Milman,Minkowski sums and symmetrizations, Lecture Notes in Mathematics1317, Springer-Verlag, Berlin, 1988, pp. 169–180.

    Google Scholar 

  10. W. J. Firey,The determination of convex bodies from their mean radius of curvature functions, Mathematika14 (1967), 1–13.

    MathSciNet  MATH  Google Scholar 

  11. T. Figiel and N. Tomczak-Jaegermann,Projections onto Hilbertian subspaces of Banach spaces, Israel Journal of Mathematics33 (1979), 155–171.

    Article  MATH  MathSciNet  Google Scholar 

  12. Y. Gordon,On Milman’s inequality and random subspaces which escape through a mesh in ℝ n, Lecture Notes in Mathematics1317, Springer-Verlag, Berlin, 1988, pp. 84–106.

    Google Scholar 

  13. H. Groemer,Geometric Applications of Fourier Series and Spherical Harmonics, Encyclopedia of Mathematics and its Applications61, Cambridge University Press, Cambridge, 1996.

    MATH  Google Scholar 

  14. A. A. Giannopoulos and M. Papadimitrakis,Isotropic surface area measures, Mathematika (to appear).

  15. Y. Gordon, O. Guédon and M. Meyer,An isomorphic Dvoretzky’s theorem for convex bodies, Studia Mathematica127 (1998), 191–200.

    MATH  MathSciNet  Google Scholar 

  16. F. John,Extremum problems with inequalities as subsidiary conditions, inCourant Anniversary Volume, Interscience, New York, 1948, pp. 187–204.

    Google Scholar 

  17. D. R. Lewis,Ellipsoids defined by Banach ideal norms, Mathematika26 (1979), 18–29.

    Article  MATH  MathSciNet  Google Scholar 

  18. V. D. Milman,Random subspaces of proportional dimension of finite dimensional normed spaces: Approach through the isoperimetric inequality, Lecture Notes in Mathematics1166, Springer-Verlag, Berlin, 1985, pp. 106–115.

    Google Scholar 

  19. V. D. Milman,Inégalité de Brunn-Minkowski inverse et applications à la théorie locale des espaces normés, Comptes Rendus de l’Académie des Sciences, Paris302 (1986), 25–28.

    MATH  MathSciNet  Google Scholar 

  20. V. D. Milman and A. Pajor,Isotropic position and inertia ellipsoids and zonoids of the unit ball of a normed n-dimensional space, Lecture Notes in Mathematics1376, Springer-Verlag, Berlin, 1989, pp. 64–104.

    Google Scholar 

  21. V. D. Milman and A. Pajor,Entropy and asymptotic geometry of non-symmetric convex bodies, preprint.

  22. V. D. Milman and G. Schechtman,Asymptotic Theory of Finite Dimensional Normed Spaces, Lecture Notes in Mathematics1200, Springer-Verlag, Berlin, 1986.

    MATH  Google Scholar 

  23. V. D. Milman and G. Schechtman,Global versus Local asymptotic theories of finite-dimensional normed spaces, Duke Mathematical Journal90 (1997), 73–93.

    Article  MATH  MathSciNet  Google Scholar 

  24. V. D. Milman and G. Schechtman,An “isomorphic” version of Dvoretzky’s theorem, Comptes Rendus de l’Académie des Sciences, Paris321 (1995), 541–544.

    MATH  MathSciNet  Google Scholar 

  25. C. M. Petty,Surface area of a convex body under affine transformations, Proceedings of the American Mathematical Society12 (1961), 824–828.

    Article  MATH  MathSciNet  Google Scholar 

  26. G. Pisier,Holomorphic semi-groups and the geometry of Banach spaces, Annals of Mathematics115 (1982), 375–392.

    Article  MathSciNet  Google Scholar 

  27. G. Pisier,The Volume of Convex Bodies and Banach Space Geometry, Cambridge Tracts in Mathematics94, Cambridge University Press, 1989.

  28. A. Pajor and N. Tomczak-Jaegermann,Subspaces of small codimension of finite dimensional Banach spaces, Proceedings of the American Mathematical Society97 (1986), 637–642.

    Article  MATH  MathSciNet  Google Scholar 

  29. R. C. Reilly,On the Hessian of a function and the curvatures of its graph, The Michigan Mathematical Journal20 (1973), 373–383.

    MATH  MathSciNet  Google Scholar 

  30. M. Rudelson,Sections of the difference body, Discrete and Computational Geometry (to appear).

  31. R. Schneider,Convex Bodies: The Brunn-Minkowski Theory, Encyclopedia of Mathematics and its Applications44, Cambridge University Press, Cambridge, 1993.

    MATH  Google Scholar 

  32. N. Tomczak-Jaegermann,Banach-Mazur Distances and Finite Dimensional Operator Ideals, Pitman Monographs38, Pitman, London, 1989.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Giannopoulos.

Additional information

Supported in part by a research grant of the University of Crete.

Supported in part by the Israel Science Foundation founded by the Academy of Sciences and Humanities.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giannopoulos, A.A., Milman, V.D. Extremal problems and isotropic positions of convex bodies. Isr. J. Math. 117, 29–60 (2000). https://doi.org/10.1007/BF02773562

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02773562

Keywords

Navigation