Skip to main content
Log in

The baryon mass spectrum and the reciprocity principle of born

Массовый спектр барионов и принцип взаимности Борна

  • Published:
Il Nuovo Cimento A (1971-1996)

Summary

The reciprocity principle of Born, when used in the context of the phase-space representation of relativistic quantum mechanics, suggests a Yukawa-like equation whose eigenfunctions properly describe the baryon mass spectrum. Good numerical agreement with experimental data is established by introducing internal SU 3 symmetry, which when broken leads to a satisfactory quantitative description of the well-known linear baryon Regge trajectories.

Riassunto

Il principio di reciprocità di Born, quando è usato nel contesto della rappresentazione dello spazio delle fasi della meccanica quantistica relativistica, suggerisce un'equazione del tipo di Yukawa le cui autofunzioni descrivono propriamente lo spettro di massa barionico. Si ottiene un buon accordo numerico con i dati sperimentali introducende una simmetria interna SU 3, che quando è spezzata porta ad una soddisfacente descrizione quantitativa delle note traiettorie lineari di Regge del barione.

Резюме

Принцип взаимности Борна, который используется в контексте с представлением фазового пространства релятивистской квантовой механики, приводит к уравнению типа Укавы, собственные функции которого описывают массовый спектр барионов. Получается хорощее численное согласие с экспериментальными данными при введении внутренней SU 3 симметрии, нарущение которой приводит к удовлетворительному количественному описанию хорощо известных линейных барионных траекторий Редже.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Born: Proc. R. Soc. London, Ser. A, 165, 291 (1938).

    Article  ADS  Google Scholar 

  2. M. Born: Nature (London), 163, 207 (1949); Rev. Mod. Phys., 21, 463 (1949).

    Article  ADS  Google Scholar 

  3. H. Yukawa: Phys. Rev., 77, 219 (1950).

    Article  MathSciNet  ADS  Google Scholar 

  4. H. Yukawa: Phys. Rev., 91, 416 (1953).

    Article  MathSciNet  ADS  Google Scholar 

  5. M. Markov: Nuovo Cimento Suppl., 3, No. 4, 760 (1956).

    Article  Google Scholar 

  6. E. Takabayasi: Prog. Theor. Phys. Suppl., 67, 1 (1979).

    Article  MathSciNet  ADS  Google Scholar 

  7. E. Prugovečki: Hadronic J., 4, 1018 (1981).

    Google Scholar 

  8. E. Prugovečki: Lett. Nuovo Cimento, 32, 481 (1981); 33, 480 (1982).

    Article  Google Scholar 

  9. E. Caianiello: Nuovo Cimento B, 59, 350 (1980), especially p. 356.

    Article  MathSciNet  ADS  Google Scholar 

  10. J. A. Brooke, W. Guz and E. Prugovečki: Hadronic J., 5, 1717 (1982).

    Google Scholar 

  11. J. E. Johnson: Phys. Rev., 181, 1755 (1969); Phys. Rev. D, 3, 1735 (1971).

    Article  MathSciNet  ADS  Google Scholar 

  12. E. Prugovečki: Found. Phys., 12, 555 (1982).

    Article  ADS  Google Scholar 

  13. J. A. Brooke and E. Prugovečki: Relativistic canonical commutation relations and the geometrization of quantum mechanics, in preparation.

  14. S. T. Ali and E. Prugovečki: Physica A, 89, 501 (1977), eqs. (3.22), (3.23).

    Article  MathSciNet  ADS  Google Scholar 

  15. J. A. Brooke and E. Prugovečki: Lett. Nuovo Cimento, 33, 171 (1982).

    Article  Google Scholar 

  16. S. Sternberg: Proc. Natl. Acad. Sci. USA, 74, 5253 (1977); On the role of field theories in our physical conception of geometry, in Differential Geometric Methods in Mathematical Physics, Vol. II, edited by K. Bleuler, H. R. Petry and A. Reetz (Bonn, 1977), Lecture Notes in Mathematics, Vol. 676 (New York, N. Y., 1978).

    Article  MathSciNet  ADS  Google Scholar 

  17. R. Abraham and J. E. Marsden: Foundations of Mechanics, 2nd edition (Reading, Mass., 1978).

  18. S. Kobayashi and K. Nomizu: Foundations of Differential Geometry, Vol. 1 (New York, N. Y., 1963).

  19. J. Śniatycki: Geometric Quantization and Quantum Mechanics (New York, N. Y., 1980).

  20. M. Spivak: A Comprehensive Introduction to Differential Geometry, Vol. 1 (Boston, Mass., 1970).

  21. E. Prugovečki: Stochastic Quantum Mechanics and Quantum Spacetime (Dordrecht and Boston, Mass., 1984), to appear.

  22. J. A. Brooke and E. Prugovečki: Hadronic exciton states and Regge trajectories derived from reciprocity theory on quantum space-time, University of Toronto (1983).

  23. C. B. Chiu: Annu. Rev. Nucl. Sci., 22, 255 (1972).

    Article  ADS  Google Scholar 

  24. P. D. B. Collins: An Introduction to Regge Theory and High Energy Physics (Cambridge, 1977).

  25. Particle Data Group: Rev. Mod. Phys., 52, No. 2, Part II (1980); Phys. Lett. B, 111 (1982).

  26. D. Holstein and F. E. Schroeck: Experimental evidence for the stochastic quantum mechanical mass formula, Florida Atlantic University preprint (1982).

  27. J. A. Brooke and W. Guz: Lett. Nuovo Cimento, 35, 265 (1982).

    Article  Google Scholar 

  28. R. Wilson: in Proceedings of the 1971 International Symposium on Electron and Photon Interactions at High Energies, Cornell University, Ithaca (1972).

  29. H. van Dam and L. C. Biedenharn: Phys. Rev. D, 14, 405 (1976).

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by NSERC Grant A5206.

Traduzione a cura della Redazione.

Перевебено ребакцией.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brooke, J.A., Guz, W. The baryon mass spectrum and the reciprocity principle of born. Il Nuovo Cimento A (1971-1996) 78, 221–250 (1983). https://doi.org/10.1007/BF02778184

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02778184

PACS

Navigation