Skip to main content
Log in

The three-dimensional Poincaré continued fraction algorithm

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

It is proved here that for Lebesgue-almost every line in the three-dimensional Euclidean space, the Poincaré continued fraction algorithm fixes a vertex. Besides, the algorithm is nonergodic, although the Gauss map, defined by the algorithm, has an attractor and is ergodic. It is also shown that the Euclidean algorithm and the horocycle flow are orbit equivalent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Arnoux and A. Nogueira,Mesures de Gauss pour des algorithmes de fractions continués multidimensionnelles, Annales Scientifique de l’École Normale Supérieure, 4e serie,26 (1993), 645–664.

    MATH  MathSciNet  Google Scholar 

  2. A.J. Brentjes,Multi-dimensional continued fraction algorithms, Mathematical Centre Tracts 145, Amsterdam, 1981.

  3. H.E. Daniels,Processes generating permutation expansions, Biometrika49 (1962), 139–149.

    MATH  MathSciNet  Google Scholar 

  4. P.J. Fernandez,Medida e Integração, Projeto Euclides, IMPA/CNPq, Rio de Janeiro, Brasil, 1976.

    Google Scholar 

  5. H. Furstenberg,The unique ergodicity of the horocycle flow, inRecent Advances in Topological Dynamics, Springer Lecture Notes in Mathematics318 (1972), 95–115.

  6. E. Ghys,Dynamique des flots unipotents, Séminaire Bourbaki, novembre 1991 # 747, Astérisque, to appear.

  7. G.A. Hedlund,A metrically transitive group defined by the modular group, American Journal of Mathematics57 (1935), 668–678.

    Article  MATH  MathSciNet  Google Scholar 

  8. A. Hurwitz and N. Kritikos,Lectures on Number Theory, Universitext, Springer-Verlag, New York, 1986.

    MATH  Google Scholar 

  9. G.H. Hardy and E.M. Wright,An Introduction to the Theory of Numbers, 3rd edn., Oxford University Press, 1954.

  10. M.G. Kendall,Ranks and measures, Biometrika49 (1962), 133–137.

    MATH  MathSciNet  Google Scholar 

  11. A. Ya. Khintchine,Continued Fractions, Phoenix Books, The University of Chicago, 1964.

  12. W. Parry,Ergodic properties of some permutation processes, Biometrika49 (1962), 151–154.

    MATH  MathSciNet  Google Scholar 

  13. H. Poincaré,Sur un mode nouveau de répresentation geométrique de formes quadratiques définies et indefinies, Journal de l’École Polytecnique47 (1880), 177–245. Ouvres Complètes de H. Poincaré, tome V, 117–183.

    Google Scholar 

  14. H. Poincaré,Sur une généralisation des fractions continues, Comptes Rendues de l’Academie des Sciences99 (1884), 1014–1016. Ouvres Complètes de H. Poincaré, tome V, 185–188.

    Google Scholar 

  15. I. Ruzsa, Private communication, January 1993.

  16. F. Schweiger,On the Parry-Daniels transformation, Analysis1 (1981), 171–185.

    MATH  MathSciNet  Google Scholar 

  17. W. Veech,Interval exchange transformations, Journal d’Analyse Mathématique33 (1978), 222–278.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Nogueira.

Additional information

Partially supported by CNPq(Brazil) grant no. 30.1456-80.

An erratum to this article is available at http://dx.doi.org/10.1007/BFb0120366.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nogueira, A. The three-dimensional Poincaré continued fraction algorithm. Israel J. Math. 90, 373–401 (1995). https://doi.org/10.1007/BF02783221

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02783221

Keywords

Navigation