Skip to main content
Log in

Selenium-mediated differential response of β-glucosidase and β-galactosidase of germinatingTrigonella foenum-graecum

  • Original Articles
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

β-Glucosidase and β-galactosidase activity profile tested in different seeds during 24 h germination revealed reasonably high levels of activity inVigna radiata, Cicer arietinum, andTrigonella foenum-graecum. In all seeds tested, β-galactosidase activity was, in general, higher than that of β-glucosidase.T. foenum-graecum seedlings exhibited maximal total and specific activities for both the enzymes during 72 h germination. Se supplementation as Na2SeO3 up to 0.75 ppm was found to be beneficial to growth and revealed selective enhancement of β-galactosidase activity by 40% at 0.5 ppm Se. The activities of both the enzymes drastically decreased at 1.0 ppm level of Se supplementation. On the contrary, addition of Na2SeO3 in vitro up to 1 ppm to the enzyme extracts did not influence these activities. Hydrolytic rates of β-glucosidase in both control and Se-supplemented groups were enhanced by 20% with 0.05M glycerol in the medium and 30% at 0.1M glycerol. The rates were marginally higher in Se-supplemented seedlings than the controls, irrespective of added glycerol in the medium. In contrast, hydrolysis by β-galactosidase showed a trend of decrease in Se-supplemented seedlings compared to the control, when glycerol was present in the medium. Addition of Se in vitro in the assay medium showed no difference in the hydrolytic rate by β-galactosidase when compared to control, while the activity of β-glucosidase declined by 50%. Se-grown seedlings showed an enhancement of transglucosidation rate by 40% in the presence of 0.1M glycerol. The study reveals a differential response to Se among the β-galactosidase and β-glucosidase ofT. foenumgraecum with increase in the levels of β-galactosidase activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. F. Burk and K. E. Hill, Regulation of selenoproteins,Ann. Rev. Nutr. 13, 65–81 (1993).

    Article  CAS  Google Scholar 

  2. T. C. Stadman, Selenium biochemistry,Ann. Rev. Biochem. 59, 111–127 (1990).

    Article  Google Scholar 

  3. J. T. Rotruck, A. L. Pope, H. E. Ganther, A. B. Swanson, D. G. Hafeman, and W. G. Hockstra, Selenium: Biochemical role as a component of glutathione peroxidase,Science,179, 588–590 (1973).

    Article  PubMed  CAS  Google Scholar 

  4. O. Epp, R. Ladenstein and A. Wendel, The refined structure of seleno enzyme glutathione peroxidase at 0.2 nm resolution,Eur. J. Biochem. 133(1), 51–69 (1983).

    Article  PubMed  CAS  Google Scholar 

  5. O. A. Levander, D. P. DeLoach, V. C. Morris, and P. B. Moser, Platelet glutathione peroxidase activity as an index of Se status in rats,J. Nutr. 113, 55–63 (1983).

    PubMed  CAS  Google Scholar 

  6. V. Narayanaswamy, R. Padma Bai, M. Babu, and K. Lalitha, Selenium mediated biochemical changes in Japanese quails: Formulation of semi-purified low selenium diet and effect on glutathione peroxidase,Biol. Trace. Elem. Res. 10(2), 79–89 (1986).

    Google Scholar 

  7. P. D. Whanger, P. H. Weswig, J. A. Schmitz, and J. E. Oldfied, Effect of selenium and vitamin E on blood Se levels, tissue glutathione peroxidase activities and white muscle disease in sheep fed purified or hay diets,J. Nutr. 107, 1298–1307 (1977).

    PubMed  CAS  Google Scholar 

  8. A. Wendel and R. Otter, Alterations in the intermediary metabolism of selenium deficient mice,Biochim. Biophys. Acta. 925, 94–100 (1987).

    PubMed  CAS  Google Scholar 

  9. T. C. Stadman, Some selenium dependent biochemical process,Adv. Enzymol. 48, 1–28 (1979).

    Google Scholar 

  10. G. N. Schrauzer, D. A. White, and C. J. Schneider, Selenium and Cancer: Effect selenium and of the diet on the genesis of spontaneous mammary tumors in virgin inbred female C3H/St mice,Bioinorganic Chem. 8(5), 387–396 (1978).

    Article  CAS  Google Scholar 

  11. G. N. Scharuzer, Selenium and Cancer: A review,Bioinorganic Chem. 5(3), 275–281 (1976).

    Article  Google Scholar 

  12. J. Smith and A. Shrift, Phylogenetic distribution of GSH Px,Comp. Biochem. Physiol. 63B, 39–44 (1979).

    CAS  Google Scholar 

  13. A. Shrift, Aspects of selenium metabolism in higher plants,Ann. Rev. Plant Physiol. 20, 475–494 (1969).

    Article  CAS  Google Scholar 

  14. P. M. Dey and E. D. Campillo, Biochemistry of the multiple forms of glycosidases in plants,Adv. Enzymol. 56, 141–249 (1984).

    PubMed  CAS  Google Scholar 

  15. B. Henrissat, A classification of glycosyl hydrolases based on amino acid sequence similarities,Biochem. J. 280, 309–316 (1991).

    PubMed  CAS  Google Scholar 

  16. H. M. Flowers and N. Sharon, Glycosidases-Properties and application to the study of complex carbohydrates,Adv. Enzymol. 48, 29–95 (1979).

    PubMed  CAS  Google Scholar 

  17. R. Leah, J. Kigel, I. Svendsen, and J. Mundy, Biochemical and molecular characterisation of a barley seed β-glucosidase,J. Biol. Chem. 270(26), 15789–15795 (1995).

    Article  PubMed  CAS  Google Scholar 

  18. K. Lalitha and K. Easwari, Kinetic analysis Selenium -75 uptake by mitochondria of different Se status,Biol. Trace. Elem. Res. 48(1), 67–90 (1995).

    PubMed  CAS  Google Scholar 

  19. W. D. Bonner. Jr, Preparation of plant mitochondria,Meth. Enzymol. 10, 126–133 (1967).

    Article  CAS  Google Scholar 

  20. J. P. Weber and A. L. Fink, Temperature dependent change in the rate limiting step of β-glucosidase catalysis,J. Biol. Chem. 255(19), 9030–9032 (1980).

    PubMed  CAS  Google Scholar 

  21. G. L. Miller, Use of dinitro salicylic acid reagent for determination of reducing sugar,Anal. Chem. 31, 426–428 (1959).

    Article  CAS  Google Scholar 

  22. O. H. Lowry, N. J. Rosenbrough, J. L. Farr, and R. J. Randall, Protein measurment with folin phenol reagent,J. Biol. Chem. 193, 265–268 (1951).

    PubMed  CAS  Google Scholar 

  23. P. M. Dey, Biochemistry of α-D-galactosidic linkages in the plant kingdom,Adv. Carbohydr. Chem. Biochem. 37, 283–372 (1980).

    CAS  Google Scholar 

  24. J. Schwartz, J. Sloan, and Y. C. Lee, Mannosidase, glucosidase and galactosidase in sweet almond emulsion,Arch. Biochem. Biophys. 137, 122–127 (1970).

    Article  PubMed  CAS  Google Scholar 

  25. P. M. Dey, Polymorphism of some glycosidases from barley,Phytochem. 16, 323–325 (1977).

    Article  CAS  Google Scholar 

  26. P. M. Dey and M. Dickson, Seperation and properties of β-galactosidase fromCajanus indiens, Biochim. Biophys. Acta. 370, 269–275 (1974).

    PubMed  CAS  Google Scholar 

  27. P. V. Wag, Purification of jackbean meal β-galactosidase by a new affinity adsorbent,Biochim. Biophys. Acta. 522, 515–520 (1978).

    Google Scholar 

  28. I. Marbasch, A. M. Mayer, and R. Maron, Galactosidases in cultivated and wild peas,Phytochem. 17, 655–657 (1978).

    Article  Google Scholar 

  29. W. Hosel and W. Barz, Characterization of β-glucosidase isoenzymes possibly involved in lignification from Chick pea(Cicer arietinum), Eur. J. Biochem. 84, 487–492 (1975).

    Article  Google Scholar 

  30. M. Kalinowska and Z. A. Wojciechowski, Purification and some properties of steryl β-glucoside hydrolase fromSinapis Alba seedlings,Phytochem. 17, 1533–1537 (1978).

    Article  CAS  Google Scholar 

  31. K. Easwari and K. Lalitha, Subcellular distribution of75Se during uptake and its influence on mitochondrial oxidations in germinatingVigna radiata L,Biol. Trace. Elem. Res. 48(2), 141–146 (1995).

    Article  PubMed  CAS  Google Scholar 

  32. G. M. Umezurike, The β-glucosidase fromBotryo diplodia theobromae—Mechanism of enzyme catalysed reactions,Biochem. J. 179, 503–507 (1979).

    PubMed  CAS  Google Scholar 

  33. G. M. Umezurike, The β-glucosidase fromBotryo diplodia theobromae pat- Kinetics of enzyme catalysed hydrolysis of o-nitrophenyl β-D-glucopyranoside in dioxan/water,Biochem. J. 175, 455–459 (1978).

    PubMed  CAS  Google Scholar 

  34. G. M. Umezurike, The mechanism of action of β-glucosidase fromBotryo diplodia theobromae pat,Biochem. J. 241, 455–462 (1987).

    PubMed  CAS  Google Scholar 

  35. K. Easwari, Metabolic significance of selenium in germinatingVigna radiata and oxygen dependent cellular processes, Ph.D. thesis, Indian Institute of Technology, Madras, India (1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sreekala, M., Lalitha, K. Selenium-mediated differential response of β-glucosidase and β-galactosidase of germinatingTrigonella foenum-graecum . Biol Trace Elem Res 64, 247–258 (1998). https://doi.org/10.1007/BF02783341

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02783341

Index entries

Navigation