Skip to main content
Log in

Oxidative stress during selenium deficiency in seedlings oftrigonella foenum-graecum and mitigation by mimosine

Part I. Hydroperoxide Metabolism

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Oxidative stress during selenium (Se) deficiency in the seedlings ofTrigonella foenum-graecum grown for 72 h was investigated and the response to supplemented levels of Se (0.5-1 ppm) and mimosine (0.05-1 mM) was evaluated. Beneficial effects of Se was maximal at 0.75 ppm. Mimosine, a toxic amino acid, was also found to be beneficial to the growth of the seedlings exposed up to 0.2 mM. When compared to the stressed seedlings, mitochondrial oxygen uptake from seedlings of Se (0.75 ppm) group and mimosine (0.2 mM) group exhibited threefold enhancement in state 3 respiration rate and a controlled state 4 rate, with respiratory control ratios of 5–8. Upon supplementation at the optimal levels, Superoxide dismutase (SOD) activities were enhanced fourfold with Se and eightfold with mimosine in the mitochondria. The soluble activity in mimosine groups increased twofold, but only by 75% in Se groups. Peroxidase activity registered a significant increase by threefold in mitochondria and fourfold in soluble fraction in both Se and mimosine groups. Exposure to Se or mimosine exhibited a differential response in the mitochondrial catalase and ascorbate peroxidase (Asc-Px) activities. In the Se groups, both catalase and Asc-Px in mitochondria decreased by 50–60%, which was contrasted by 60% increase in Asc-Px activity and 40% in catalase activity in mimosine groups. Supplementation with either Se or mimosine evoked similar responses of increases with respect to soluble catalase by twofold to threefold and Asc-Px by 90%. The results of the present study reveal (1) the Prevalence of oxidative stress inT. foenum-graecum during Se deficiency, (2) enhanced mitochondrial functional efficiency mediated by Se and mimosine independently, and (3) an antitoxidative role for mimosine during Se deficiency. The study demonstrates for the first time that mimosine, a naturally occuring toxic amino acid, could be a beneficial growth factor in concentrations between 0.1 and 0.2 mM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. H. Sies, Biochemistry of oxidative stress,Angew. Chem. Int. Ed. Engl. 25, 1058–1071 (1986).

    Article  Google Scholar 

  2. H. Sies, Oxidative stress: oxidants and antioxidants,Exp. Physiol. 82, 291–295 (1997).

    PubMed  CAS  Google Scholar 

  3. A. B. Swanson, D. G. Hafeman, and W. G. Hoekstra, Selenium: biochemical role as a component of glutathione peroxidase,Science 179, 588–590 (1973).

    Article  PubMed  Google Scholar 

  4. H. S. Marinho, F. Antunes, and R. E. Pinto, Role of glutathione peroxidase and phos-pholipid hydroperoxide glutathione peroxidase in the reduction of lysophospholipid hydroperoxides,Free Radical Biol. Med. 22, 871–883 (1997).

    Article  CAS  Google Scholar 

  5. X. Gidrol, W. S. Lin, N. Degousee, S. F. Yip, and A. Kush, Accumulation of reactive oxygen species and oxidation of cytokinin in germinating soy bean seeds,Eur. ]. Biochem. 224, 21–28 (1994).

    Article  CAS  Google Scholar 

  6. S. Puntarulo, M. Galleano, R. A. Sanchez, and A. Boveris, Superoxide anion and hydrogen peroxide metabolism in soya bean embryonic axes during germination,Biochim. Biophys. Acta 1074, 277–283 (1991).

    PubMed  CAS  Google Scholar 

  7. H. Rennenberg and A. Polle, Protection from oxidative stress in transgenic plants,Biochim. Soc. Trans. 22, 936–940 (1994).

    CAS  Google Scholar 

  8. R. D. Aliena, R. P. Webba, and S. A. Schakeb, Use of transgenic plants to study antioxidant defense,Free Radical Biol. Med. 23, 473–479 (1997).

    Article  Google Scholar 

  9. T. C. Stadtman, Selenium biochemistry,Annu. Rev. Biochem. 59, 111–127 (1990).

    Article  PubMed  CAS  Google Scholar 

  10. R. F. Burk and K. E. Hill, Regulation of selenoproteins,Annu. Rev. Nutr. 13, 65–81 (1993).

    Article  PubMed  CAS  Google Scholar 

  11. O. Epp, R. Ladenstein, and A. Wendel, The refined structure of seleno enzyme glu-tathione peroxidase at 0.2 nm resolution,Eur. J. Biochem. 133, 51–69 (1983).

    Article  PubMed  CAS  Google Scholar 

  12. B. Ren, W. Huang, B. Akesson, and R. Ladenstein, Crystal structure of seleno glu-tathione peroxidase from human plasma at 2.9 å resolution,J. Mol. Biol. 268, 869–885 (1997).

    Article  PubMed  CAS  Google Scholar 

  13. H. Toyoda, S. Himeno, and N. Imura, Regulation of glutathione peroxidase mRNA level by dietary selenium manipulation,Biochim. Biophys. Acta 1049, 213–215 (1990).

    PubMed  CAS  Google Scholar 

  14. G. N. Schrauzer and D. A. White, Selenium in human nutrition dietary intakes and effects of supplementation,Bioinorg. Chem. 8, 303–318 (1978).

    Article  PubMed  CAS  Google Scholar 

  15. G. N. Schrauzer and J. Sacher, Selenium in the maintenance and therapy of HIV-infected patients,Chem. Biol. Interact. 91, 199–205 (1994).

    Article  PubMed  CAS  Google Scholar 

  16. V. Narayanaswamy, P. Padma Bai, Mary Babu, and K. Lalitha, Selenium mediated biochemical changes in Japanese quails—formulation of semi-purified low selenium diet and effect on glutathione peroxidase,Biol. Trace Element Res. 10, 79–89 (1986).

    Google Scholar 

  17. K. Lalitha, P. Rani, and V. Narayanaswamy, Metabolic relevance of selenium in the insectCorcyra cephalonica—uptake of75Se and subcellular distribution,Biol. Trace Ele-ment Res. 41, 217–233 (1994).

    CAS  Google Scholar 

  18. N. Depege, J. Drevet, and N. Boyer, Molecular cloning and characterization of tomato cDNAs encoding glutathione peroxidase-like proteins,Eur. J. Biochem. 253, 445–151 (1998).

    Article  PubMed  CAS  Google Scholar 

  19. K. X. Huang and J. Clausen, Uptake, distribution and turnover rates of selenium in barley,Biol. Trace Element Res. 40, 213–223 (1994).

    CAS  Google Scholar 

  20. B. Neuhierl and A. Bock, On the mechanism of selenium tolerance in Se accumu-lating plants: purification and characterization of a specific selenocysteine methyl transferase from cultured cells of Astragalus bisculatus,Eur. J. Biochem. 239, 235–238 (1996).

    Article  PubMed  CAS  Google Scholar 

  21. K. Easwari and K. Lalitha, Subcellular distribution of75selenium during uptake and its influence on mitochondrial oxidation in germinatingVigna radiata, Biol. Trace. Ele-ment Res. 48, 141–160 (1995).

    Article  CAS  Google Scholar 

  22. C. M. Varghese, Metabolic effects of mimosine during methanogenesis, Ph.D thesis, Indian Institute of Technology, Madras, (1995).

    Google Scholar 

  23. W. D. Bonner, Jr., Preparation of plant mitochondria,Methods Enzymol. 10, 126–133 (1967).

    CAS  Google Scholar 

  24. B. Chance and G. R. Williams, A simple and rapid assay of oxidative phosphoryla-tion,Nature 4469, 1120–1121 (1955).

    Article  Google Scholar 

  25. C. Beauchamp and I. Fridovich, Superoxide dismutase-improved assays and an assay applicable to acrylamide gel,Anal. Biochem. 44, 276–287 (1971).

    Article  PubMed  CAS  Google Scholar 

  26. H. Aebi, Catalase in vitro,Methods Enzymol. 105, 121–126 (1984).

    Article  PubMed  CAS  Google Scholar 

  27. L. M. Shannon, E. Kay, and J. Y. Lew, Peroxidase isozymes from horse radish roots: isolation and physical properties,J. Biol. Chem. 241, 2166–2172 (1966).

    PubMed  CAS  Google Scholar 

  28. Y. Nakano and K. Asada, H2O2 is scavenged by ascorbate specific peroxidase in spinach chloroplasts,Plant Cell Physiol. 22, 867–880 (1981).

    CAS  Google Scholar 

  29. S. C. Grace, Phylogenitic distribution of Superoxide dismutase supports an endosym-biotic origin for chloroplasts and mitochondria,Life Sci. 47, 1875–1886 (1990).

    Article  PubMed  CAS  Google Scholar 

  30. S. Streller, S. Kromer, and G. Wingsle, Isolation and purification of mitochondrial Mn SOD from the gymnospermPinus sylvestris L.,Plant Cell Physiol. 35, 859–867 (1994).

    CAS  Google Scholar 

  31. D. Zhu and J. G. Scandalios, Maize mitochondrial Mn SOD are encoded by a differ-entially expressed multigene family,Proc. Natl. Acad. Sci. USA 90, 9310–9314 (1993).

    Article  PubMed  CAS  Google Scholar 

  32. T. Fester and W. Schuster, Potato mitochondrial Mn SOD is an RNA binding protein.Biochem. Mol. Biol. Int. 36, 67–75 (1995).

    PubMed  CAS  Google Scholar 

  33. R. Radi, J. F. Turren, L. Y. Chang, K. M. Bush, J. D. Crapo, and B. A. Freeman, Detec-tion of catalase in rat heart mitochondria,J. Biol. Chem. 266, 22028–22034 (1991).

    PubMed  CAS  Google Scholar 

  34. R. W. Skadsen, P. Schulze-Lefert, and J. M. Herbst, Molecular cloning, characteriza-tion and expression analysis of two catalase isozyme gene from barley,Plant Mol. Biol. 29, 1005–1014 (1995).

    Article  PubMed  CAS  Google Scholar 

  35. N. Grotjohann, A. Janning, and R. Eising, In vitro photoinactivation of catalase iso-forms from cotyledons of sunflower (Helianthus annuus L.),Arch. Biochem. Biophys. 346, 208–218 (1997).

    Article  PubMed  CAS  Google Scholar 

  36. L. Guan and J. G. Scandalios, Molecular evolution of maize catalases and their rela-tionship to other eukaryotic and prokaryotic catalases,J. Mol. Evol. 42, 570–579 (1996).

    Article  PubMed  CAS  Google Scholar 

  37. H. Willekens, S. Chamnongpol, M. Davey, M. Schraudner, C. Langenbantels, M. Van Montagu, et al., Catalase is a sink for H2O2 and is indispensable for stress defense in C3 plants,EMBO J.16, 4806–4816 (1997).

    Article  PubMed  CAS  Google Scholar 

  38. P. Rani and K. Lalitha, Evidence for altered structure and impaired mitochondrial electron transport function in selenium deficiency,Biol. Trace Element Res. 51, 225–234 (1996).

    Article  CAS  Google Scholar 

  39. R. B.van Huystee, Some molecular aspects of plant peroxidase biosynthetic studies.Annu. Rev. Plant Physiol. Plant Mol. Biol 38, 205–219 (1987).

    Article  Google Scholar 

  40. N. G. Lewis, R. A. Razal, and E. Yamamato, Lignin degradation by peroxidase in organic media: A reassessment,Proc. Natl. Acad. Sci. USA 84, 7925–7927 (1987).

    Article  PubMed  CAS  Google Scholar 

  41. L. M. Lagrimini and S. Rothsein, Tissue specificity of tobaco peroxidase isozymes and their induction by wounding and tobaco mosaic virus infection,Plant Physiol. 84, 438–142 (1987).

    PubMed  CAS  Google Scholar 

  42. D. A. Dalton, S. L. Joyner, M. Recana, I. Hurbe-Ormaetxe, and J. M. Chatfield, Antiox-idant defense in the peripheral cell layers of legume root nodules,Plant Physiol. 116, 37–43 (1998).

    Article  PubMed  CAS  Google Scholar 

  43. Y Gueta-Dahan, V. Z. Yani, B. A. Zilinskas, and G. Ben-Hayyim, Salt and oxidative stress: similar and specific responses and their relation to salt tolerance in citrus,Planta 203, 460–469 (1997).

    Article  PubMed  CAS  Google Scholar 

  44. C. Bowler, M. van Montagu, and D. Inze, Superoxide dismutase and stress tolerance,Annu. Rev. Plant Physiol. Plant Mol. Biol. 43, 83–116 (1992).

    Article  CAS  Google Scholar 

  45. D. R. Drath and M. L. Karnovsky, Superoxide production by phagocytic leucocytes,J. Exp. Med. 141, 257–262 (1975).

    Article  PubMed  CAS  Google Scholar 

  46. Petrone, D. K. English, K. Wong, and J. M. McCord, Free radicals and inflammation: superoxide-dependent activation of a neutrophil chemotactic factor in plasma,Proc. Natl. Acad. Sci. USA 77, 1159–1163 (1980).

    Article  PubMed  CAS  Google Scholar 

  47. S. C. Fry, Oxidative scission of plant cell-wall polysaccharides by ascorbate-induced hydroxyl radicals,Biochem. J. 332, 507–515 (1998).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sreekala, M., Santosh, T.R. & Lalitha, K. Oxidative stress during selenium deficiency in seedlings oftrigonella foenum-graecum and mitigation by mimosine. Biol Trace Elem Res 70, 193–207 (1999). https://doi.org/10.1007/BF02783829

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02783829

Index entries

Navigation