Skip to main content
Log in

Oxidative stress during selenium deficiency in seedlings ofTrigonella foenum-graecum and mitigation by mimosine part II. glutathione metabolism

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Actaptive alterations in glutathione (GSH) metabolism were studied during oxidative stress induced by selenium (Se) deficiency in germinating seedlings ofTrigonella foenum- graecum grown for 72 h and the response to supplementation individually of Se or mimosine was explored. Growth enhancement with improved mitochondrial efficiency was elicited by supplementation of Se at 0.5-0.75 ppm or mimosine at 0.1-0.2 mM. Total thiol and protein levels of mitochondrial and soluble fractions, in general, did not vary significantly with supplementation of either Se or mimosine except that the mitochondrial protein levels in mimosine groups (0.1-0.2 mM) decreased by 20–30%. Mitochondrial glutathione peroxidase (GSH-Px) increased by twofold in activity toward H2O2, cumene hydroperoxide (CHP), and t-butyl hydroperoxide (tBHP) in Se groups, and by 50–60% increase toward H2O2 and CHP but by a twofold enhancement in enzyme activity with tBHP in mimosine groups. Soluble GSH-Px activity increased by 30–40% only in mimosine groups and remained unaltered in Se groups. Glutathione S-transferase activity (GST) in the soluble fraction of both Se and mimosine groups increased dramatically by fivefold to sixfold. Distinct differences were noted in the response of the stressed seedlings toward exposure to Se or mimosine and included a decline in glutathione reductase (GR) activity by 50–60% in both mitochondria and soluble fractions of Se groups and an increase in GR activity of the mitochondria by twofold and of the soluble enzyme activity by 30% in the mimosine groups. Mimosine exposure resulted in a dose-dependent decrease in the γ-glutamyl transpeptidase levels, but, in contrast, a significant enhancement by 50% was noted in the Se group at 0.75 ppm. The results including the differential response of GR activity to Se or mimosine supplementation are reflective of an effective reductive environment in Se groups and increased turnover of GSH in the presence of mimosine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. E. Cadenas, Biochemistry of oxygen toxicity,Annu. Rev. Biochem. 58, 79–110 (1989).

    Article  PubMed  CAS  Google Scholar 

  2. H. Sies, Strategies of antioxidant defense,Eur. J. Biochem. 215, 213–219 (1993).

    Article  PubMed  CAS  Google Scholar 

  3. H. Sies, Oxidative stress: oxidants and antioxidants,Exp. Physiol. 82, 291–295 (1997).

    PubMed  CAS  Google Scholar 

  4. J. A. Hernandez, F. J. Corpas, M. Gomez, L. A. del Rio, and F. Sevilla, Salt induced oxidative stress mediated by activated oxygen species in pea leaf mitochondria,Phys-iol. Planta 89, 103–110 (1993).

    Article  CAS  Google Scholar 

  5. A. H. Price, N. M. Atherton, and G. A. F. Hendry, Plants under drought-stress gen-erate activated oxygen,Free Radical Res. Commun. 8, 61–66 (1989).

    Article  CAS  Google Scholar 

  6. N. Schmitt and P. Dizengremel, Effect of osmotic stress on mitochondria isolated from mung bean and soybean seedlings,Plant Physiol. Biochem. 27, 17–26 (1989).

    Google Scholar 

  7. A. Meister and M. E. Anderson, Glutathione,Annu. Rev. Biochem. 52, 711–760 (1983).

    Article  PubMed  CAS  Google Scholar 

  8. W. Wang and N. Ballatori, Endogenous glutathione conjugates: occurrence and bio-logical functions,Pharmacol. Rev. 50, 335–356 (1998).

    PubMed  CAS  Google Scholar 

  9. R. W. Scholz, L. A. Minicucci, and C. C. Reddy, Effects of vitamin E and selenium on antioxidant defense in rat heart,Biochem. Mol. Biol. Int. 42, 997–1006 (1997).

    PubMed  CAS  Google Scholar 

  10. T. Nakane, K. Asayama, K. Kodera, H. Hayashibe, N. Uchida, and S. Nakazawa, Effect of selenium deficiency on cellular and extra cellular glutathione peroxidases: immunochemical detection and mRNA analysis in rat kidney and serum,Free Radi-cal Biol. Med. 25, 504–511 (1998).

    Article  CAS  Google Scholar 

  11. O. Epp, R. Ladenstein, and A. Wendel, The refined structure of selenoenzyme glu-tathione peroxidase at 0.2 nm resolution,Eur. J. Biochem. 133, 51–69 (1983).

    Article  PubMed  CAS  Google Scholar 

  12. H. S. Marinho, F. Antunes, and R. E. Pinto, Role of glutathione peroxidase and phos-pholipid hydroperoxide glutathione peroxidase in the reduction of lysophospholipid hydroperoxides,Free Radical Biol. Med. 22, 871–873 (1997).

    Article  CAS  Google Scholar 

  13. V. Narayanaswamy, P. Padma Bai, Mary Babu, and K. Lalitha, Selenium mediated biochemical changes in Japanese quails-Formulation of semi-purified low selenium diet and effect on glutathione peroxidase,Biol. Trace Element Res. 10, 79–89 (1986).

    Google Scholar 

  14. P. Rani and K. Lalitha, Evidence for altered structure and impaired mitochondrial electron transport function in selenium deficiency,Biol. Trace Element Res. 51, 225–234 (1996).

    Article  CAS  Google Scholar 

  15. A. Matsuda, M. Kimura, and Y. Itokawa, Influence of selenium deficiency on vitamin deficiency on vital functions in rats,Biol. Trace Element Res. 61, 287–301 (1998).

    Article  CAS  Google Scholar 

  16. K. Easwari and K. Lalitha, Subcellular distribution of75selenium during uptake and its influence on mitochondrial oxidation in germinatingVigna radiata, Biol. Trace Ele-ment Res. 48, 141–160 (1995).

    Article  CAS  Google Scholar 

  17. O. H. Lowry, N. J. Rosenbrough, J. L. Farr, and R. J. Randall, Protein measurement with folin phenol reagent,J. Biol. Chem. 193, 265–268 (1951).

    PubMed  CAS  Google Scholar 

  18. G. L. Ellman, Tissue sulfhydryl groups,Arch. Biochem. Biophys. 82, 70–77 (1959).

    Article  PubMed  CAS  Google Scholar 

  19. R. A. Lawrence and R. F. Burk, Glutathione peroxidase activity in selenium-deficient rat liver,Biochem. Biophys. Res. Commun. 71, 952–958 (1976).

    Article  PubMed  CAS  Google Scholar 

  20. E. Racker, Glutathione reductase from baker’s yeast and beef liver,J. Biol. Chem. 217, 855–865 (1955).

    PubMed  CAS  Google Scholar 

  21. W. H. Habig, M. J. Pabst, and W. B. Jakoby, Glutathione S-transferases. The first enzy-matic step in mercapturic acid formation,J. Biol. Chem. 249, 7130–7139 (1974).

    PubMed  CAS  Google Scholar 

  22. C. J. Bixler and W. C. Dauterman, Studies on γ-glutamyl transferase in the housefly,Insect Biochem. 11, 463–466 (1981).

    Article  CAS  Google Scholar 

  23. S. Puntarulo, M. Galleano, R. A. Sanchez, and A. Boveris, Superoxide anion and hydrogen peroxide metabolism in soybean embryonic axes during germination,Biochem. Biophys. Acta 1074, 277–283 (1991).

    PubMed  CAS  Google Scholar 

  24. N. Depege, J. Drevet, and N. Boyer, Molecular cloning and characterization of tomato cDNA s encoding glutathione peroxidase-like proteins,Eur. J. Biochem. 253, 445–151 (1998).

    Article  PubMed  CAS  Google Scholar 

  25. F. Ursini, M. Maiorino, and A. Rovei, Phospholipid hydroperoxide glutathione per-oxidase: more than an antioxidant enzyme?Biomed. Environ. Sci. 10, 327–332 (1997).

    PubMed  CAS  Google Scholar 

  26. M. Sugimoto, S. Furui, and Y. Suzuki, Molecular cloning and characterization of cDNA encoding putative phospholipid hydroperoxide glutathione peroxidase from spinach,Biosci. Biotechnol. Biochem. 8, 1379–1381 (1997).

    Article  Google Scholar 

  27. M. Sugimoto and W. Sakamoto, Putative phospholipid hydroperoxide glutathione peroxidase gene fromArabidopsis thaliana induced by oxidative stress,Genes Genet. Syst. 72, 311–316 (1997).

    Article  PubMed  CAS  Google Scholar 

  28. T. Beeor-Tzahar, G. Ben-Hayyim, D. Holland, Z. Falhin, and Y. Eshdat, A stress associated citrus protein is a distinct plant phospholipid hydroperoxide gluta-thione peroxidase,FEBS Lett. 366, 151–155 (1995).

    Article  PubMed  CAS  Google Scholar 

  29. V. P. Roxas, R. K. Smith, Jr., E. R. Allen, and R. D. Allen, Overexpression of GST/GSH-Px enhances the growth of transgenic tobacco seedlings during stress,Nat. Biotechnol. 15, 988–991, (1997).

    Article  PubMed  CAS  Google Scholar 

  30. H. Lee, J. Jo, and D. Son, Molecular cloning and characterization of the gene encoding glutathione reductase inBrassica campestris, Biochim. Biophys. Acta 1395, 309–314 (1998).

    CAS  Google Scholar 

  31. D. O’Kane, V. Gill, P. Boyd, and R. Burdon, Chilling, oxidative stress and antioxidant responses inArabidopsis thaliana callus,Planta 198, 371–377 (1996).

    Article  PubMed  CAS  Google Scholar 

  32. G. Wingsle and S. Karpinski, Differential redox regulation by glutathione reductase and Cu-Zn Superoxide dismutase gene expression inPinus sylvestris L. needles,Planta 198, 151–157 (1996).

    Article  PubMed  CAS  Google Scholar 

  33. R. G. Stevens, G. P. Creissen, and P. M. Mullineaux, Cloning and characterization of a cytosolic glutathione reductase cDNA from pea (Pisum sativum L.) and its expres-sion in response to stress,Plant Mol. Biol. 35, 641–654 (1997).

    Article  PubMed  CAS  Google Scholar 

  34. K. Tanaka, M. Aono, H. Saji, and A. Kubo, Stress tolerance of transgenicNicotiana tabacum with enhanced activities of glutathione reductase and Superoxide dismutase,Biochem. Soc. Trans. 24, 200S (1996).

    PubMed  CAS  Google Scholar 

  35. P. Mullineaux, C. Enard, R. Hellens, and G. Creissen, Characterization of glu-tathione reductase gene and its genetic locus from pea (Pisum sativum L.),Planta 200, 186–194 (1996).

    Article  PubMed  CAS  Google Scholar 

  36. K. A. Marrs, The function and regulation of glutathione S-transferases in plants,Annu. Rev. Plant Physiol. Plant Mol. Biol. 47, 127–158 (1996).

    Article  PubMed  CAS  Google Scholar 

  37. M. Skipsey, C. J. Andrews, J. K. Townson, I. Jepson, and R. Edwards, Substrate and thiol specificity of a stress-inducible glutathione transferase from soybean, FEBSLett. 409, 370–374 (1997).

    Article  PubMed  CAS  Google Scholar 

  38. R. Tenhaken, A. Levine, L. F. Brisson, R. A. Dixon, and C. Lamb, Function of the oxidative burst in hypersensitive disease resistance,Proc. Natl. Acad. Sci. USA 92, 4158–1163 (1995).

    Article  PubMed  CAS  Google Scholar 

  39. J. W. Gronwald and K. L. Plaisance, Isolation and characterization of glutathione S-transferase isozymes from sorghum,Plant Physiol. 117, 877–892 (1998).

    Article  PubMed  CAS  Google Scholar 

  40. D. P. Dixon, D. J. Cole, and R. Edwards, Purification, regulation and cloning of glu-tathione transferase (GST) from maize resembling the auxin inducible type III GSTs,Plant Mol. Biol. 36, 75–87 (1998).

    Article  PubMed  CAS  Google Scholar 

  41. D. E. Reichers, G. P. Irzyk, S. S. Jones, and E. P. Fuerst, Partial characterization of glu-tathione S-transferase from wheat (Triticum sp.) and purification of safener-induced glutathione S-transferase fromTriticum tauschii, Plant Physiol.114, 1461–1470 (1997).

    Article  Google Scholar 

  42. P. Reinmer, L. Prade, P. Hof, T. Neuefeind, R. Huber, R. Zettl, et al., Three-dimension-al structure of glutathione S-transferase fromArabidopsis thaliana at 2.2 å resolution: structural characterization of herbicide-conjugating plant glutathione S-transferase and a novel active site architecture,J. Mol. Biol. 255, 289–309 (1996).

    Article  Google Scholar 

  43. P. G. Board, R. T. Baker, G. Chelvanayagam, and L. S. Jermiin, Zeta, a novel class of glutathione transferases in a range of species from plants to humans,Biochem. J. 328, 929–935 (1997).

    PubMed  CAS  Google Scholar 

  44. N. Tanyguchi and Y. Ikeda, γ-Glutamyl transpeptidases: catalytic mechanism and gene expression,Adv. Enzymol. Relat. Areas Mol. Biol. 72, 239–278 (1998).

    Article  Google Scholar 

  45. M. H. Hanigan, γ-Glutamyl transpeptidase, a glutathionase: its expression and func-tion in carcinogenesis,Chem Biol. Interact. 111, 333–342 (1998).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Santosh, T.R., Sreekala, M. & Lalitha, K. Oxidative stress during selenium deficiency in seedlings ofTrigonella foenum-graecum and mitigation by mimosine part II. glutathione metabolism. Biol Trace Elem Res 70, 209–222 (1999). https://doi.org/10.1007/BF02783830

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02783830

Index Entries

Navigation