Skip to main content
Log in

Evidence for altered structure and impaired mitochondrial electron transport function in selenium deficiency

  • Original Articles
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Selenium (Se) deficiency in the experimental models,Coturnix coturnix japonica andCorcyra cephalonica, resulted in impaired mitochondrial substrate oxidations and lowered thiol levels. Studies with respiratory inhibitors confirmed reduced mitochondrial electron transport enzyme activities, especially at cytochromec oxidase (COX), the terminal segment. Enhanced mitochondrial lipid peroxidation in Se deficiency was more pronounced in the heart tissue of the quail compared to other tissues. Glutathione peroxidase (GSH-Px) activity toward H2O2 and cumene hydroperoxide were generally low in the insect muscle tissue and activity toward H2O2 was maximal in the quail heart mitochondria that was not very sensitive to Se status. Lowered COX activity in Se deficiency was more directly correlated with the increased level of lipid peroxidation than with the GSH-Px activity measured, suggestive of Se mediated protective mechanisms independent of GSH-Px. Electron microscopic observations revealed structural changes such as loss of cristae with proliferative and degenerative changes of the mitochondria in Se deficiency. Involvement of Se in maintaining structure and functional efficiency of mitochondria is evident from the present study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

GSH-Px:

glutathione peroxidase

PH-GPx:

phospholipid hydroperoxide glutathione peroxidase

COX:

cytochromec oxidase

ETC:

electron transport chain

TMPD:

N,N,N,N′-tetramethyl-p-phenylene diamine

DCPIP:

2,6-dichlorophenol indophenol

References

  1. L. Flohe,Free Radicals in Biology, vol. 5, W. A. Pryor, ed., Academic, NY, pp. 223–254 (1982).

    Google Scholar 

  2. K. E. Hill and R. F. Burk,J. Biol. Chem. 257, 10668 (1982).

    PubMed  CAS  Google Scholar 

  3. M. A. Correia and R. F. Burk,J. Biol. Chem. 253, 6203 (1978).

    PubMed  CAS  Google Scholar 

  4. W. C. Fisher and P. D. Whanger,J. Nutr. Sci. Vitaminol. 23, 389 (1977).

    Google Scholar 

  5. W. C. Fisher and P. D. Whanger,J. Nutr. 107, 1493 (1977).

    Google Scholar 

  6. O. Esaki,J. Biol. Chem. 265, 1124 (1990).

    Google Scholar 

  7. D. Behne, A. Kyriakopoulos, H. Meinhold, and J. Kohrle,Biochem. Biophys. Res. Commun. 173, 1143 (1990).

    Article  PubMed  CAS  Google Scholar 

  8. D. Behne, T. Hoefer-Bosse, and W. Elger, inSelenium in Biology and Medicine, Part B, G. F. Combs, O. A. Levander, J. E. Spallholz, and J. E. Oldfiled, eds., AVI, NY, pp. 773–789 (1987).

    Google Scholar 

  9. V. Narayanaswami and K. Lalitha,Biol. Trace Element Res.14, 87 (1987).

    CAS  Google Scholar 

  10. K. Lalitha, P. Rani, and V. Narayanaswami,Biol. Trace Element Res. 41, 217 (1994).

    CAS  Google Scholar 

  11. K. Lalitha, and K. Easwari,Biol. Trace Element Res. 48, 67 (1995).

    Article  CAS  Google Scholar 

  12. V. Narayanaswami, R. Padma Bai, Mary Babu, and K. Lalitha,Biol. Trace Element Res. 10, 79 (1986).

    CAS  Google Scholar 

  13. B. Chance and G. R. Williams,Nature 175, 1120 (1955).

    Article  PubMed  CAS  Google Scholar 

  14. R. A. Lawrence and R. F. Burk,Biochem. Biophys. Res. Commun. 71, 952 (1976).

    Article  PubMed  CAS  Google Scholar 

  15. G. L. Ellman,Arch. Biochem. Biophys. 82, 70 (1959).

    Article  PubMed  CAS  Google Scholar 

  16. Y. Hatefi,Methods Enzymol. 53, 27 (1978).

    PubMed  CAS  Google Scholar 

  17. D. M. Turnbull, H. S. A. Sherratt, D. M. Davies, and A. G. Sykes,Biochem. J. 206, 511 (1982).

    PubMed  CAS  Google Scholar 

  18. J. A. Buege and S. D. Aust,Methods Enzymol. 52, 302 (1978).

    Article  PubMed  CAS  Google Scholar 

  19. Y. Hatefi and J. S. Rieske,Methods Enzymol. 10, 225 (1967).

    CAS  Google Scholar 

  20. R. W. Taylor, M. A. Birch-Machin, K. Bartlett, and D. M. Turnbull,Biochim. Biophys. Acta 1181, 261 (1993).

    PubMed  CAS  Google Scholar 

  21. W. H. Vanneste, M. Y. Vanneste, and H. S. Mason,J. Biol. Chem. 249, 7390 (1974).

    PubMed  CAS  Google Scholar 

  22. D. F. Birt, A. D. Julius, C. F. Runice, and S. Sayed,Ann. Nutr. Metab. 27, 81 (1983).

    PubMed  CAS  Google Scholar 

  23. T. W. Simmons, I. S. Jamall, and R. A. Lockshin,FEBS Lett. 218, 251 (1987).

    Article  PubMed  CAS  Google Scholar 

  24. S. S. Chernick, J. G. Moe, G. P. Rodnan, and K. Schwarz,J. Biol. Chem. 217, 829 (1955).

    PubMed  CAS  Google Scholar 

  25. S. Vadhanavikit and H. E. Ganther,Biochem. Biophys. Res. Commun. 190, 921 (1993).

    Article  PubMed  CAS  Google Scholar 

  26. P. Cikryt, S. Feuerstein, and A. Wendel,Biochem. Pharmacol. 31, 2873 (1982).

    Article  PubMed  CAS  Google Scholar 

  27. C. C. Reddy, J. R. Burgess, Z-Z. Gong, E. J. Massaro, and C.-P. D. Tu,Arch. Biochem. Biophys. 224, 87 (1983).

    Article  PubMed  CAS  Google Scholar 

  28. S. Ahmad, M. A. Beilstein, and R. S. Pardini,Arch. Insect. Biochem. Biophys.,12, 31 (1989).

    Article  CAS  Google Scholar 

  29. T. W. Simmons, I. S. Jamall, and R. A. Lockshin,Biochem. Biophys. Res. Commun. 165, 158 (1989).

    Article  PubMed  CAS  Google Scholar 

  30. T. W. Simmons, I. S. Jamall, and R. A. Lockshin,Comp. Biochem. Physiol. 94 B, 323 (1989).

    Google Scholar 

  31. R. F. Burk, R. A. Lawrence, and J. M. Lane,J. Clin. Invest. 65, 1024 (1980).

    PubMed  CAS  Google Scholar 

  32. F. Weitzel, F. Ursini, and A. Wendel,Biochim. Biophys. Acta,1036, 88 (1990).

    PubMed  CAS  Google Scholar 

  33. P. C. Jost, K. K. Nadakavukaren, and O. H. Griffith,Biochemistry 16, 3110 (1977).

    Article  PubMed  CAS  Google Scholar 

  34. N. C. Robinson, F. Strey, and L. Talbert,Biochemistry 19, 3656 (1980).

    Article  PubMed  CAS  Google Scholar 

  35. C. Godeas, G. Sandri, and E. Panfili,Biocheim. Biophys. Acta 1191, 147 (1994).

    Article  CAS  Google Scholar 

  36. F. Weitzel, and A. Wendel,J. Biol. Chem. 268, 6288 (1993).

    PubMed  CAS  Google Scholar 

  37. J. G. Fisher, R. L. Tackett, E. W. Howerth, and M. A. Johnson,J. Nutr. 122, 2128 (1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rani, P., Lalitha, K. Evidence for altered structure and impaired mitochondrial electron transport function in selenium deficiency. Biol Trace Elem Res 51, 225–234 (1996). https://doi.org/10.1007/BF02784077

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02784077

Index Entries

Navigation