Skip to main content
Log in

Determination of selenium in the human brain by graphite furnace atomic absorption spectrometry

  • Original Articles
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

For the investigation of neurological disorders, a development of simple and accessible methods for determining selenium in human brain samples is required. We devised a method of determining selenium using graphite furnace atomic absorption spectrometry (GFAAS). An electrodeless discharge lamp provided the sufficient sensitivity to determine brain selenium. The matrix interferences were avoided by using high temperature, a prolonged pyrolysis step, and a palladium matrix modifier. The technique of standard addition was used to evaluate the sample concentrations. The accuracy of the method was confirmed by a bovine liver reference material. The detection limit of selenium was 0.04 ng. The determined selenium concentrations of human brain cortex and white matter were higher than those of putamen (115–155 and 206–222 ng/g wet wt, respectively). These GFAAS values agreed with those obtained by fluorometric analysis (r=0.91,n=10). Moreover, the GFAAS values were compatible to those reported by other researchers (99–274 ng/g wet wt), in which selenium concentrations in putamen also tended to be higher than the other two regions. We conclude that GFAAS is useful for selenium analysis in brain samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Mano, T. Takayanagi, T. Abe, and Y. Takizawa, Amyotrophic lateral sclerosis and mercury—A preliminary report,Clin. Neurol. 30, 1275–1277 (in Japanese) (1990).

    CAS  Google Scholar 

  2. S. S. Khare, W. D. Ehmann, E. J. Kasarskis, and W. R. Markesbery, Trace element imbalances in amyotrophic lateral sclerosis,Neurotoxicology 11, 521–532 (1990).

    PubMed  CAS  Google Scholar 

  3. D. Wenstrup, W. D. Ehmann, and W. R. Markesbery, Trace element imbalances in isolated subcellular fractions of Alzheimer’s disease brains,Brain Res. 533, 125–131 (1990).

    Article  PubMed  CAS  Google Scholar 

  4. F. M. Corrigan, G. P. Reynolds, and N. I. Ward, Reduction of zinc and selenium in brain in Alzheimer’s disease,Trace Elem. Med. 8, 1–5 (1991).

    CAS  Google Scholar 

  5. F. M. Corrigan, G. P. Reynolds, and N. I. Ward, Hippocampal tin, aluminum and zinc in Alzheimer’s disease,Biometals 6, 149–154 (1993).

    Article  PubMed  CAS  Google Scholar 

  6. H. Nagata, S. Miyata, S. Nakamura, M. Kameyama, and Y. Katsui, Heavy metal concentrations in blood cells in patients with amyotrophic lateral sclerosis,J. Neurol. Sci. 67, 173–178 (1985).

    Article  PubMed  CAS  Google Scholar 

  7. J. D. Mitchell, B. W. East, I. A. Harris, R. J. Prescott, and B. Pentland, Trace elements in the spinal cord and other tissues in motor neuron disease,J. Neurol. Neurosurg. Psychiatry 49, 211–215 (1986).

    PubMed  CAS  Google Scholar 

  8. H. M. Kurlander, and B. M. Patten, Metals in spinal cord tissue of patients dying of motor neuron disease,Ann. Neurol. 6, 21–24 (1979).

    Article  PubMed  CAS  Google Scholar 

  9. W. R. Markesbery, W. D. Ehmann, M. Alauddin, and T. I. M. Hossain, Brain trace element concentrations in aging,Neurobiol. Aging 5, 19–28 (1984).

    Article  PubMed  CAS  Google Scholar 

  10. L. Zecca, R. Pietra, C. Goj, C. Mecacci, D. Radice, and E. Sabbioni, Iron and other metals in neuromelanin, substantia nigra, and putamen of human brain,Journal of Neurochemistry 62, 1097–1101 (1994).

    Article  PubMed  CAS  Google Scholar 

  11. N. A. Larsen, H. Pakkenberg, E. Damsgaard, and K. Heydorn, Topographical distribution of arsenic, manganese, and selenium in the normal human brain.J. Neurol. Sci. 42, 407–416 (1979).

    Article  PubMed  CAS  Google Scholar 

  12. W. D. Ehmann, W. R. Markesbery, E. J. Kasarskis, D. E. Vance, S. S. Khare, J. D. Hord, and C. M. Thompson, Applications of neutron activation analysis to the study of age-related neurological diseases.Biol. Trace Elem. Res. 13, 19–33 (1987).

    CAS  Google Scholar 

  13. A. Höck, U. Demmel, H. Schicha, K. Kasperek, and L. E. Feinendegen, Trace element concentration in human brain. Activation analysis of cobalt, iron, rubidium, selenium, zinc, chromium, silver, cesium, antimony and scandium,Brain 98, 49–64 (1975).

    Article  PubMed  Google Scholar 

  14. J. H. Watkinson, Fluorometric determination of selenium in biological materials with 2,3-diaminonaphthalene,Anal. Chem. 38, 92–97 (1966).

    Article  PubMed  CAS  Google Scholar 

  15. K. Julshamn, O. Ringdal, K.-E. Slinning, and O. R. Braekkan, Optimization of the determination of selenium in marine samples by atomic absorption spectrometry: Comparison of a flameless graphite furnace atomic absorption system with a hydride generation atomic absorption systeme,Spectrochim. Acta 37B, 473–482 (1982).

    CAS  Google Scholar 

  16. O. Oster, G. Schmiedel, and W. Prellwitz, The organ distribution of selenium in German adults,Biol. Trace Elem. Res. 15, 23–45 (1988).

    Article  PubMed  CAS  Google Scholar 

  17. A. J. Aller and C. Garcia-Olalla, Spectral interferences on the determination of selenium by electrothermal atomic-absorption spectrometry.J. Anal. At. Spectrom. 7, 753–760 (1992).

    Article  Google Scholar 

  18. B. Radziuk and Y. Thomassen, Chemical modification and spectral interferences in selenium determination using Zeeman-effect electrothermal atomic absorption spectrometry.J. Anal. At. Spectrom. 7, 397–403 (1992).

    Article  CAS  Google Scholar 

  19. G. R. Carnrick, D. C. Manning, and W. Slavin, Determination of selenium in biological materials with platform furnace atomic-absorption spectroscopy and Zeeman background correction,Analyst 108, 1297–1312 (1983).

    Article  CAS  Google Scholar 

  20. D. McMaster, N. Bell, P. Anderson, and A. H. Love, Automated measurement of two indicators of human selenium status, and applicability to population studies.Clin. Chem. 36, 211–216 (1980).

    Google Scholar 

  21. E. N. Drake and T. D. Hain, Palladium (II), magnesium (II), and barium (II) nitrate combinations for matrix modification in electrothermal atomic absorption measurement of total selenium in human urine,Anal. Biochem. 220, 336–339 (1994).

    Article  PubMed  CAS  Google Scholar 

  22. G. Schlemmer and B. Welz, Palladium and magnesium nitrates, a more universal modifier for graphite furnace atomic absorption spectrometry,Spectrochim. Acta 41B, 1157–1165 (1986).

    CAS  Google Scholar 

  23. J. K. Johannessen, B. Gammelgaard, O. Jons, and S. H. Hansen, Comparison of chemical modifiers for simultaneous determination of different selenium-compounds in serum and urine by Zeeman-effect electrothermal atomic-absorption spectrometry,J. Anal. At. Spectrom. 8, 999–1004 (1993).

    Article  Google Scholar 

  24. Y. Hirano, K. Yasuda, and K. Hirokawa, Relationship between effective atomic vapor temperature of selenium and matrix modifiers in graphite-furnace atomic-absorption spectrometry,Bunseki Kagaku 43, 105–110 (in Japanese) (1994).

    CAS  Google Scholar 

  25. A. Maage, K. Julshamn, and K. J. Andersen, Determination of selenium in acid digested marine samples by electrothermal atomic absorption spectrometry with continuum source background correction and nickel as a chemical modifier,J. Anal. At. Spectrom. 6, 277–281 (1991).

    Article  CAS  Google Scholar 

  26. J. Yoshinaga, H. Imai, M. Nakazawa, T. Suzuki, and M. Morita, Lack of significantly positive correlations between elemental concentrations in hair and in organs,Sci. Total Environ. 99, 125–135 (1990).

    Article  PubMed  CAS  Google Scholar 

  27. K. Julshamn, K. J. Andersen, E. Svendsen, O. Ringdal, and M. Egholm, Trace elements intake in the Faroe Islands. III. Element concentrations in human organs in populations from Bergen (Norway) and the Faroe Islands.Sci. Total Environ. 84, 25–33 (1989).

    Article  PubMed  CAS  Google Scholar 

  28. R. C. Dickson, and R. H. Tomlinson, Selenium in blood and human tissues,Clin. Chim. Acta 16, 311–321 (1967).

    Article  PubMed  CAS  Google Scholar 

  29. H. Duflou, W. Maenhaut, and J. De-Reuck, Regional distribution of potassium, calcium, and six trace elements in normal human brain,Neurochem. Res. 14, 1099–1112 (1989).

    Article  PubMed  CAS  Google Scholar 

  30. W. R. Smythe, A. C. Alfrey, P. W. Craswell, S. A. Crouch, L. S. Ibels, H. Kubo, L. L. Nunnelley, and H. Rudolph, Trace element abnormalities in chronic uremia,Ann. Intern. Med. 96, 302–310 (1982).

    PubMed  CAS  Google Scholar 

  31. T. Westermarck, Selenium content of tissues in Finnish infants and adults with various diseases, and studies on the effects of selenium supplementation in neuronal ceroid lipofuscinosis patients,Acta Pharmacol. Toxicol. 41, 121–128 (1977).

    Article  CAS  Google Scholar 

  32. C. E. Casey, B. E. Guthrie, G. M. Friend, and M. F. Robinson, Selenium in human tissues from New Zealand,Arch. Environ. Health 37, 133–135 (1982).

    PubMed  CAS  Google Scholar 

  33. G. V. Iyengar, W. E. Kollmer, and H. J. M. Bowen,The Elemental Composition of Human Tissues and Body Fluids: A Compilation of Values for Adults, Weinheim: Verlag Chemie, (1978).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ejima, A., Watanabe, C., Koyama, H. et al. Determination of selenium in the human brain by graphite furnace atomic absorption spectrometry. Biol Trace Elem Res 54, 9–21 (1996). https://doi.org/10.1007/BF02785316

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02785316

Index Entries

Navigation