Skip to main content
Log in

CD43, a molecule with multiple functions

  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

To initiate a specific immune response, lymphoid cells integrate a variety of signals generated through the orchestrated interaction of multiple cell surface molecules with their counter-receptors. As a result of the specific recognition of the antigen through antigenspecific receptors, and of the monitoring of their particular environment through the so-called coreceptor molecules, lymphoid cells go through elaborate processes of maturation and activation, contributing to the plasticity and sensitivity of immune response. CD43 is the major sialic acid rich protein on the surface of lymphocytes. However, the specific roles of this protein in different lymphoid cells under normal physiological conditions remain largely unknown. In this review we will mainly focus on the recent advances concerning the functions of this molecule as a coreceptor of different lymphoid cells as well as on the participation of this molecule in different pathologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Remold-O’Donnell E, Zimmerman C, Kenney D, Rosen FS. Expression on blood cells of sialophorin, the surface glycoprotein that is defective in WiskottAldrich syndrome. Blood 1987; 70:104–109.

    PubMed  CAS  Google Scholar 

  2. Axelsson B, Hammarstrom S, Robertson ES, Aman P, Perlmann P, Mellstedt H. The large sialoglycoprotein of human lymphocytes, I. Distribution on T and B lineage cells as revealed by a monospecific chicken antibody. Eur J Immunol;1985. 15:417–426.

    Article  PubMed  CAS  Google Scholar 

  3. Remold-O’Donnell E, Rosen FS. Sialophorin (CD43) and the WiskottAldrich syndrome. Immunodef Rev 1991;2: 151–174

    Google Scholar 

  4. Cyster J, Somoza C, Killeen N, Williams AF. Protein sequence and gene structure for mouse leukosialin (CD43), a T lymphocyte mucin without introns in the coding sequence. Eur J Immunol 1990;20:875–881

    Article  PubMed  CAS  Google Scholar 

  5. Shelley CS, Remold-O’Donnell E, Davis AE, Brans GA, Rosen FS, Carroll MC, Whitehead AS. Molecular characterization of sialophorin (CD43), the lymphocyte surface sialoglycoprotein defective in Wiskott-Aldrich syndrome. Proc Natl Acad Sci. USA 1989;86:2819–2823.

    Article  PubMed  CAS  Google Scholar 

  6. Pallant AA, Eskenazi MG, Mattei RE, Fournier SR, Carlsson M, Fukuda M, Frelinger JG. Characterization of cDNAs encoding human leukosialin and localization of the leukosialin gene to chromosome 16. Proc Natl Acad Sci USA 1989;86:1328–1332.

    Article  PubMed  CAS  Google Scholar 

  7. Carlsson SR, Fukuda M. Isolation and characterization of leukosialin, a major sialoglycoprotein on human lymphocytes. J Biol Chem 1986;261: 12779–12786

    PubMed  CAS  Google Scholar 

  8. Fukuda M, Carlsson SR, Klock JC, Dell A. Structures of O-linked oligosaccharides isolated from normal granulocytes, chronic myelogenous leukemia cells, and acute myelogenous leukemia cells. J Biol Chem 1986;261:12796–12806

    PubMed  CAS  Google Scholar 

  9. Piller V, Piller F, Fukuda M. Phosphorylation of the major leukocyte surface sialoglycoprotein, leukosialin, is increasd by phorbol 12-myristate 13-acetate. J Biol Chem 1989;264:18824–18831.

    PubMed  CAS  Google Scholar 

  10. Cyster J, Shotton DM, Williams AF. The dimensions of the T lymphocye glycoprotein and identification of linear protein epitopes that can be modified by glycosilation. EMBOJ 1991;10:892–902.

    Google Scholar 

  11. Gendler SJ, Spicer AP. Epithelial mucin genes. Annu Rev Physiol 1995;57: 607–34.

    Article  PubMed  CAS  Google Scholar 

  12. Piller F, Piller V, Fox RI, Fukuda M. Human T-lymphocyte activation is associated with changes in O-glycan biosynthesis. J Biol Chem 1988;263:15146–15150.

    PubMed  CAS  Google Scholar 

  13. Tomlinson-Jones A, Federsppiel B, Ellies LG, Williams MJ, Burgener R, Duronio V, Smith AA, Takei F, Ziltener HJ. 1994. Characterization of the activation-associated isoform of CD43 on murine T lymphocytes. J Immunol 153: 3426–3439.

    Google Scholar 

  14. Ellies LG, Tomlinson Jones A, Williams MJ, Ziltener HJ: Differential regulation of CD43 glycoforms on CD4+ and CD8+ T lymphocytes in graft-versus host disease. Glycobiology 1994;4:885–893

    Article  PubMed  CAS  Google Scholar 

  15. Ellis LG, Tomlinson Jones A, Williams MJ, Ziltener HJ. The CD43 130 KDa preipheral T cell activation antigen is downregulated in thymic positive selection. Blood 1996;88: 1725–1732.

    Google Scholar 

  16. Brown TJ, Shuford WW, Wang WC, Nadler SJ, Bailey TS, Marquard H, Mittler RS. Characterization of a CD43/leukosialin-mediated pathway for inducing apoptosis in human T-lymphoblastoid cells. J Biol Chem 1996;271: 27686–27695.

    Article  PubMed  CAS  Google Scholar 

  17. Baecher-Allan C, Kemp JD, Dorfman KS, Barth RK, Frelinger JG. Differential epitope expression of Ly-48 (mouse leukosialin). Immunogenetics 1993;37:183–192.

    Article  PubMed  CAS  Google Scholar 

  18. Maemura K, Fukuda M: Poly-Nacetyllactosaminyl O-glycans attached to leukosialin. The presence of sialyl Lex structures in O-glycans. J Biol Chem 1992; 267: 24379–24386.

    PubMed  CAS  Google Scholar 

  19. Schmid K, Hediger MA, Brossmer R, Collins JH, Haupt H, Marti T, Hoffner GD, Schaller J, Takagaki K, Walsh MT, Schwick HG, Rosen FS, Remold-O’Donnell E. Amino acid sequence of human plasma galactoglycoprotein: identity with the extracellular regionof CD43 (sialophorin). Proc. Natl Acad Sci USA 1992;89:663–667

    Article  PubMed  CAS  Google Scholar 

  20. Rosenstein Y, Park JK, Hahn WC, Rosen FS, Bierer BE, Burakoff SJ. CD43, a molecule defective in the Wiskott-Aldrich syndrome, binds ICAM-l. Nature 1991;354:233–235.

    Article  PubMed  CAS  Google Scholar 

  21. Baum LG, Pang M, Perillo NL, Wu T, Delegeane A, Uittenbogaart CH, Fukuda M, Selhamer J. Human thymic epithelial cells express an endogenous lectin, Galectin-1, which binds the core 2 o-glycans on thymocytes and T lymphoblastoid cells. J Exp Med 1995;181:877–887.

    Article  PubMed  CAS  Google Scholar 

  22. Stöckl J, Majdic O, Kohl P, Pickl WF, Menzel JE, Knapp W. Leukosialin (CD43)-major histocompatibility class 1 molecule interactions involved in spontaneous T cell conjugate formation. J Exp Med 1996;184:1769–1779.

    Article  PubMed  Google Scholar 

  23. Nathan C, Xie QW, Mecarelli-Hawlbachs L, Jin WW. Albumin inhibits neutrophil spreading and hydrogen peroxide release by blocking the shedding of CD43 (sialophorin, leukosialin). J Cell Biol. 1993;122:243–256.

    Article  PubMed  CAS  Google Scholar 

  24. Perillo NL, Pace KE, Seihamer JJ, Baum LG. Apoptosis of T cells mediated by galectin-1. Nature 1995;378:736–739.

    Article  PubMed  CAS  Google Scholar 

  25. Zhang K, Sikut R, Hansson G. A MUC1 mucin secreted from a colon carcinoma cell line inhibits target cell lysis by natural killer cells. Cell Immunol 1997;176: 158–165.

    Article  PubMed  CAS  Google Scholar 

  26. Baeckstrom D. Post-translational fate of a mucin-like leukocyte sialoglycoprotein (CD43) aberrantly expressed in a colon carcinoma cell line. J Biol Chem 1997;272:11503–11509.

    PubMed  CAS  Google Scholar 

  27. Santamaria M, Lopez-Beltran A, Toro M, Pena J, Molina IJ: Specific monoclonal antibodies against leukocyte-restricted cell surface molecule CD43 react with non-hematopoietic tumor cells. Cancer Res 1996;56:3526–3529.

    PubMed  CAS  Google Scholar 

  28. Parkman R, Remold-O’Donnell E, Kenney DM, Perrine S, Rosen FD: Surface protein abnormalities in lymphocytes and platelets from patients with Wiskott-Aldrich syndrome. Lancet 1981;ii:1387–1389

    Article  Google Scholar 

  29. Derry JMJ, Ochs HD, Francke U: Isolation of a novel gene mutated in Wiskott-Aldrich syndrome. Cell 1994;78:635–644, erratum: Cell 1995;79:5.

    Article  PubMed  CAS  Google Scholar 

  30. Rivero-Lezcano OM, Marcilla A, Sameshima JH, Robbins KC: Wiskott-Aldrich syndrome protein physically associates with Nck through Src Homolgy 3 domains. Mol Cel Biol 1995;15: 5725–5731.

    CAS  Google Scholar 

  31. Cory GOC, MacCarthy-Morrogh L, Banin S, Goit I, Brickell P, Levinski R, Kinnon C, Lovering R: Evidence that the WiskottAldrich syndrome protein may be involved in lymphoid cell signaling pathways. J Immunol 1996;1 57:3791–3795.

    Google Scholar 

  32. Symons M, Derry DMJ, Karlak B, Jiang S, Lemahieu V, McCormick F, Francke U, Abo A. WiskottAldrich syndrome protein, a novel effector for the GTPase CDC42Hs, is implicated in actin polymerization. Cell 1996;84: 723–734.

    Article  PubMed  CAS  Google Scholar 

  33. Banin S, Truong O, Katz DR, Waterfield MD, Brickell PM, Gout I. Wiskott-Aldrich syndrome protein (WASp) is a binding partner for c-Src family protein tyrosine kinases. Curr Biol 1996;6:981–988.

    Article  PubMed  CAS  Google Scholar 

  34. Burbelo PD, Dreschel D, Hall A: A conserved binding motif defines numerous candidate target proteins both for Cdc42 and Rac GTPases. J Biol Chem 1995;270: 29071–29074.

    Article  PubMed  CAS  Google Scholar 

  35. Kolluri R, Fuchs Tolias K, Carpenter CL, Rosen FS, Kirchhausen T. Direct interaction of the Wiskott-Aldrich syndrome protein with the GTPase Cdc42. Proc Natl Acad Sci USA 1996;93: 5615–5618.

    Article  PubMed  CAS  Google Scholar 

  36. Manjunath N, Johnson RS, Staunton DE, Pasqualini R, Ardman B. Targeted disruption of the CD43 gene enhances T-lymphocyte adhesion. J Immunol 1993;151:1528–1534.

    PubMed  CAS  Google Scholar 

  37. Manjunath N, Correa M, Ardman M, Ardman B: Negative regulation of T cell adhesion and activation by CD43. Nature 1995;377: 535–538.

    Article  PubMed  CAS  Google Scholar 

  38. Stockton BM, Cheng G, Manjunatah N, Ardman B, and von Hadrian UH: Negative regulation of T cell homing by CD43. Immunity 1998;8:373–381.

    Article  PubMed  CAS  Google Scholar 

  39. Howell DN, Ahuja V, Jones L, Blow O and Sanfilippo FP. Differential expression of CD43 (leukosialin, sialophorin) by mononuclear phagocyte populations. J Leukoc Biol 1994;55:536–544.

    PubMed  CAS  Google Scholar 

  40. Ahuja V, Miller SE and Howell DN. Identification of two subpopulations of rat monocytes expressing disparate molecular forms and quantities od CD43. Cell Immunol 1995;163:59–69.

    Article  PubMed  CAS  Google Scholar 

  41. Scriba A, Schneider M, Grau V, van der Meide PH, and Steiniger B: Rat monocytes up-regulate NKR-P1A and down-modulate CD4 and CD43 during activation. J Leukoc Biol 1997;741-752.

  42. Bazil V and Strominger JL. CD43, the major sialoglycoprotein of human leukocytes, is proteolytically cleaved from the surface of stimulated lymphocytes and granulocytes. Proc Nat Acad Sci USA 1993;90:3792–3796.

    Article  PubMed  CAS  Google Scholar 

  43. Campanero MR, Pulido R, Alonso JL, Pivel JP, Pimentel-Munoz F, Fresno M, Sanchez-Madrid F. Down-regulation by tumor necrosis factor a of neutrophil cell surface expression of the sialophorin CD43 and the hyaluronate receptor CD44 through a proteolytic mechanism. Eur J Immunol 1991; 21:3045–3048.

    Article  PubMed  CAS  Google Scholar 

  44. Lopez S, Hawlbachs-Mecarelli L, Ravaud P, Bessou G, Dougados M, Porteu F. Neutrophil expression of tumor-necrosis factor receptors (TNF-R) and of activation markers (CD11b, CD43, CD63) in rheumatoid arthritis. Clin Exp Immunol 1995;101:25–32.

    Article  PubMed  CAS  Google Scholar 

  45. Remold-O’Donnell E., Parent D. Down-regulation of neutrophil CD43 by opsonized zymosan. Blood 1995;85:337–342.

    PubMed  CAS  Google Scholar 

  46. Remold-O’Donnell E., Parent D. Specific sensitivity of CD43 to neutrophil elastase. Blood 1995; 86:2395–2402.

    PubMed  CAS  Google Scholar 

  47. Gulley ML, Ogata LC, Thorson JA, Dailey MO, Kemp JD: Identification of a murine pan-T cell antigen which is also expressed during the terminal phases of B cell differentiation. J Immunol 1988;140:3751–3757.

    PubMed  CAS  Google Scholar 

  48. Hardy RR, Carmack CE, Shinton SA, Kemp JD, Hayakawa K: Resolution and characterization of proB and pre-pro-B cell stages in normal mouse bone marrow. J Exp Med 1991;173:1213–1225.

    Article  PubMed  CAS  Google Scholar 

  49. Dragone LL, Barth RK, Sitar KL, Disbrow GL, Frelinger JG. Disregulation of leukosialin (CD43, Ly48, sialophorin) expression in the B-cell lineage of transgenic mice increases splenic B-cell number and survival. Proc Natl Acad Sci USA 1995;92:626–630.

    Article  PubMed  CAS  Google Scholar 

  50. Otsberg JR, Dragone LL, Driskell T, Moynihan JA, Phipps R, Barth RK, Frelinger JG. Disregulated expression of CD43 (leukosialin, sialophorin) in the B-cell lineage leads to immunodeficiency. J Immunol 1996;57:4876–4884.

    Google Scholar 

  51. McEvoy LM, Sun H, Frelinger JG, Butcher EC. Anti-CD43 inhibition of T cell homing. J Exp Med 1997;185:1493–1498.

    Article  PubMed  CAS  Google Scholar 

  52. Nong YH, Remold-O’Donell E, LeBien TW, Remold HG: A monoclonal antibody to sialophorin (CD43) induces homotypic adhesion and activation of human monocytes. J Exp Med 1989; 170:259–267.

    Article  PubMed  CAS  Google Scholar 

  53. Cyster JG, Williams AF. The importance of cross-linking in the homotypic aggregation of lymphocytes induced by anti-leukosialin (CD43) antibodies. Eur J Immunol 1992;22:2565–2572.

    Article  PubMed  CAS  Google Scholar 

  54. De Smet W, Walter H, Van Hove L. A new CD43 monoclonal antibody induces homotypic aggregation of human lymphocytes through aCD11a/CD18-dependent and-independent mechanism. Immunology 1993;76:46–54.

    Google Scholar 

  55. Rosenkranz AR, Majdic O, Stockl J, Pickl W, Stockinger H, Knapp W: Induction of neutrophil homotypic adhesion via sialophorin (CD43), a surface sialoglycoprotein restricted to hematopoietic cells. Immunology 1993;80:431–438.

    PubMed  CAS  Google Scholar 

  56. Stöckl J, Majdic O, Kohl P, Pickl WF, Menzel JE, Knapp W. Leukosialin (CD43)-major histocompatibility class 1 molecule interactions involved in spontaneous T cell conjugate formation. J Exp Med 1996;184:1769–1779.

    Article  PubMed  Google Scholar 

  57. Sanchez-Mateos P, Campanero MR, del Pozo MA, Sanchez-Madrid F: Regulatory role of CD43 leukosialin on integrin-mediated T-cell adhesion to endothelial and extracellular matrix ligands and its polar redistribution to cellular uropod. Blood 1995; 86:2228–2239.

    PubMed  CAS  Google Scholar 

  58. Pickl W, Majdic O, Kohl P, Stockl J, Riedl E, Scheinecker C, Bello-Fernandez C, Knapp W. Molecular and functional caracteristics of dendritic cells generated from highly purified CD 14+ peripheral blood monocytes. J Immunol 1996; 157:3850–3859.

    PubMed  CAS  Google Scholar 

  59. Babina M, Weber S, Mammeri K, Henz BM. Signal transduction via CD43 (leukosialin, sialophorin) and associated biological effects in a human mast cell line (HMC-1). BBRC 1998;243:163–169.

    PubMed  CAS  Google Scholar 

  60. Axelsson B, Youseffi-Etemad R, Hammerstrom S, and Perlmann P. Induction of aggregation and enhancement of proliferation and IL2 secretion in human T cells by antibodies to CD43. J Immunol 1988;141:2912–2917.

    PubMed  CAS  Google Scholar 

  61. Wiken M, Bjork P, Axelsson B, and Perlmann P. Enhancement of human B-cell proliferation by a monoclonal antibody to CD43. Scand J Immunol 1989;29:363–370.

    Article  PubMed  CAS  Google Scholar 

  62. Vargas-Cortes M, Axelsson B, Larsson A, Berzins T, and Perlmann P. Enhancement of human spontaneous cell-mediated cytotoxicity by a monoclonal antibody against the large sialoglycoprotein (CD43) on peripheral blood lymphocytes. Scand J Immunol 1988;27:661–671.

    Article  PubMed  CAS  Google Scholar 

  63. Mentzer SJ, Remold-O’Donnell E, Crimmins MA, Bierer BE, Rosen FS, Burakoff SJ. Sialophorin, a surface glycoprotein defective in the Wiskott-Aldrich syndrome, is involved in human T lymphocyte proliferation. J Exp Med 1987; 165:1383–1392.

    Article  PubMed  CAS  Google Scholar 

  64. Chatila TA, Geha RS. Phosphorylation of T cell membrane proteins by activators of protein kinase C. J Immunol 1988;140:4308–4314.

    PubMed  CAS  Google Scholar 

  65. Silverman LB, Wong RC, Remold-O’Donnell E, Vercelli D, Sancho J, Terhorst C, Rosen F, Geha R, Chatila T. Mechanism of mononuclear cell activation by an anti-CD43 (sialophorin) agonistic antibody. J Immunol 1989;142: 4194–4200.

    PubMed  CAS  Google Scholar 

  66. Wong RCK, Remold-O’Donnel E, Vercelli D, Sancho J, Terhorst C, Rosen F, Geha R, Chatila T. Signal transduction via leukocyte antigen CD43 (sialophorin). Feedback regulation by protein kinase C. J Immunol 1990;144:1455–1460.

    PubMed  CAS  Google Scholar 

  67. Axelsson B, Perlmann P. Persistent superphosphorylation of leukosialin (CD43) in activated T cells and in tumour cell lines. Scand J Immunol 1989;30:539–547.

    Article  PubMed  CAS  Google Scholar 

  68. Piller V, Piller F, Fukuda M. Phosphorylation of the major leukocyte surface sialoglycoprotein, leukosialin, is increased by phorbol 12myristate 13-acetate. J Biol Chem 1989;264:18824–18831.

    PubMed  CAS  Google Scholar 

  69. Park JK, Rosenstein YJ, Remold-O’Donnell E, Bierer BE, Rosen FS, Burakoff SJ. Enhancement of the T cell activation by the CD43 molecule whose expression is defective in Wiskot-Aldrich syndrome. Nature 1991;350:706–709

    Article  PubMed  CAS  Google Scholar 

  70. Pedraza-Alva G, Mérida LB, Burakoff SJ, Rosenstein Y. CD43-specific activation of T cells induces association of CD43 to Fyn kinase. J Biol Chem 1996; 271:27564–27568

    Article  PubMed  CAS  Google Scholar 

  71. Pedraza-Alva G, Mérida L, Burakoff SJ, Rosenstein Y. T cell activation through the CD43 molecule leads to Vav tyrosine phosphorylation and MAPK pathway activation. J Biol Chem 1998; 273:14218–24.

    Article  PubMed  CAS  Google Scholar 

  72. Alvarado M, Klassen C, Cerny J, Horejsi V, and Schmidt RE. MEM-59 monoclonal antibody detects a CD43 epitope involved in lymphocyte activation. Eur J Immunol 1995;5:1051.

    Article  Google Scholar 

  73. Seveau S, Lopez S, Lesavre P, Guichard J, Cramer EM, Halbwachs-Mecarelli L. Leukosialin (CD43, sialophorin) redistribution in uropods of polarized neutrophils is induced by CD43 cross-linking by antibodies, by colchicine or by chemotactic peptides. J Cell Sci 1997;110: 1465–1475.

    PubMed  CAS  Google Scholar 

  74. Yonemura S, Nagafuchi A, Sato N, Tsukita S. Concentration of an integral membrane protein, CD43 (leukosialin, sialophorin), in the cleavage furrow through the interaction of its cytoplasmic domain with actin based cytoskeleton J. Cell. Biol. 1993; 120:437.

    Article  PubMed  CAS  Google Scholar 

  75. Serrador JM, Nieto M, Alonso-Lebrero JL, del Pozo MA, Calvo J, Furthmayr H, Schwartz-Albiez R, Lozano F, Gonzalez-Amaro R, Sanchez-Mateos P, Sanchez-Madrid F: CD43 interacts with meosin and ezrin and regulates its redistribution to the uropods of T lymphocytes at the cell-cell contacts. Blood 1998;91:1–14.

    Google Scholar 

  76. Yonemura S, Hirao M, Doi Y, Takahashi N, Kandot, Tsukita S. Ezrin/ radixin/moesin (ERM) proteins bind to a positively charged amino acid cluster in the juxta-membrane cytoplasmic domain of CD44, CD43, and ICAM2. J Cell Biol 1998;140:885–95.

    Article  PubMed  CAS  Google Scholar 

  77. Hitt AL, Luna EJ: Membrane interactions with the actin cytoskeleton. Curr Biol 1994;6:120.

    CAS  Google Scholar 

  78. Bazil V, Brandt J, Tsukamoto A, Hoffman R. Apoptosis of human hematopoietic progenitor cells induced by crosslinking of surface CD43, the major sialoglycoprotein of leukocytes. Blood 1995;86:502–511.

    PubMed  CAS  Google Scholar 

  79. Misawa Y, Nagaoka H, Kimoto H, Ishii Y, Kitamura K, Tsunetsugu-Yakota Y, Shibuya M, Takemori T. CD43 expression in a B cell lymphoma, WEHI 231, reduces susceptibility to G1 arrest and extends survival in culture upon serum depletion. Eur J Immunol 1996;26:2573–2581.

    Article  PubMed  CAS  Google Scholar 

  80. Ardman B, Sikorski MA, Settles M, Staunton DE: Human immunodeficiency virus type 1-infected individuals make autoantibodies that bind CD43 on normal thymic lymphocytes. J Exp Med 1990;172:1151.

    Article  PubMed  CAS  Google Scholar 

  81. Giordanengo V, Limouse M, Desroys Du Roure L, Cottalorda J, Doglio A, Passeron A, Fuzibet JG, Lefebvre JC. Autoantibodies directed against CD43 molecules with an altered glycosylation status on human immunodeficiency virus type 1 (HIV-1)-infected CEM cells are found in all HIV-1+ individuals. Blood 1995;86:2302–2311.

    PubMed  CAS  Google Scholar 

  82. Gluschankof P, Mondor I, Gelderblom HR, Sattentau Q. Cell membrane vesicles are a major contaminant of gradient-enriched human immunodeficiency virus type-1 preparations. Virology 1997;230:125–133.

    Article  PubMed  CAS  Google Scholar 

  83. Rothwell SW, Wright DG: Characterization of influenza virus binding sites on human neutrophils. J Immunol 1994;152:2358–2367.

    PubMed  CAS  Google Scholar 

  84. Abramson JS, Hudnor HR. Role of sialophorin (CD43) receptor in mediating influenzaA virusinduced polymorphonuclear leukocyte dysfunction. Blood 1995; 85:1615–1619.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yvonne Rosenstein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rosenstein, Y., Santana, A. & Pedraza-Alva, G. CD43, a molecule with multiple functions. Immunol Res 20, 89–99 (1999). https://doi.org/10.1007/BF02786465

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02786465

Key words

Navigation