Skip to main content
Log in

Regulation of integrin function by T cell activation

Points of Convergence and Divergence

  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

Lymphocyte adhesiveness is dynamically regulated in response to conditions in the extracellular environment. One mechanism of regulation of integrin adhesion receptors involves a rapid, but transient, increase in integrin function upon T lymphocyte activation. These integrin activating signals can be initiated either via ligation of Ig superfamily members that are coupled to tyrosine kinase cascades, such as the CD3/T cell receptor, CD2, and CD28, or by G proteincoupled receptors for chemokines. Analysis of integrin activation induced by CD3/TCR, CD2 and CD28 suggests a critical role for phosphoinositide 3-OH kinase (PI 3-K). This review summarizes recent insights into PI 3-K-dependent regulation of integrin function in leukocytes, including the mechanisms by which these receptors are coupled to PI 3-K, and potential downstream effectors of PI 3-K that regulate integrin-mediated adhesion in leukocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shimizu Y, Rose DM, Ginsberg MH: Integrins and the immune response. Adv Immunol1999;72: 325–380.

    Article  PubMed  CAS  Google Scholar 

  2. Schwartz MA, Schaller MD, Ginsberg MH: Integrins: emerging paradigms of signal transduction. Annu Rev Cell Biol 1995;11:549–599.

    Article  CAS  Google Scholar 

  3. Springer TA: Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell 1994;76:301–314.

    Article  PubMed  CAS  Google Scholar 

  4. Shattil SJ, Kashiwagi H, Pampori N: Integrin signaling: the platelet paradigm. Blood 1998;91:2645–2657.

    PubMed  CAS  Google Scholar 

  5. Shimizu Y, van Seventer GA, Horgan KJ, Shaw S: Regulated expression and binding of three VLA (β1) integrin receptors on T cells. Nature 1990;345:250–253.

    Article  PubMed  CAS  Google Scholar 

  6. Dustin ML, Springer TA: T-cell receptor cross-linking transiently stimulates adhesiveness through LFA-1. Nature 1989;341:619–624.

    Article  PubMed  CAS  Google Scholar 

  7. Shimizu Y, van Seventer GA, Ennis E, Newman W, Horgan KJ, Shaw S: Crosslinking of the T cell-specific accessory molecules CD7 and CD28 modulates T cell adhesion. J Exp Med 1992;175:577–582.

    Article  PubMed  CAS  Google Scholar 

  8. van Kooyk Y, van de Wiel-van Kemenade P, Weder P, Kuijpers TW, Figdor CG: Enhancement of LFA-1-mediated cell adhesion by triggering through CD2 or CD3 on T lymphocytes. Nature 1989;342: 811–813.

    Article  PubMed  Google Scholar 

  9. Tanaka Y, Adams DH, Hubscher S, Hirano H, Siebenlist U, Shaw S: T-cell adhesion induced by proteoglycan-immobilized cytokine MIP1β. Nature 1993;361:79–82.

    Article  PubMed  CAS  Google Scholar 

  10. Carr MW, Alon R, Springer TA: The C-C chemokine MCP-1 differentially modulates the avidity of β1 and β2 integrins on T lymphocytes. Immunity 1996;4:179–187.

    Article  PubMed  CAS  Google Scholar 

  11. Lloyd AR, Oppenheim JJ, Kelvin DJ, Taub DD: Chemokines regulate T cell adherence to recombinant adhesion molecules and extracellular matrix proteins. J Immunol 1996:156:932–938.

    PubMed  CAS  Google Scholar 

  12. Gunn MD, Tangemann K, Tam C, Cyster JG, Rosen SD, Williams LT: A chemokine expressed in lymphoid high endothelial venules promotes the adhesion and chemotaxis of naive T lymphocytes. Proc Natl Acad Sci USA 1998;95:258–263.

    Article  PubMed  CAS  Google Scholar 

  13. Campbell JJ, Hedrick J, Zlotnik A, Siani MA, Thompson DA, Butcher EC: Chemokines and the arrest of lymphocytes rolling under flow conditions. Science 1998;279:381–384.

    Article  PubMed  CAS  Google Scholar 

  14. Ward SG, Bacon K, Westwick J: Chemokines and T lymphocytes: More than an attraction. Immunity 1998;9:1–11.

    Article  PubMed  CAS  Google Scholar 

  15. Tanaka Y, Albelda SM, Horgan KJ, van Seventer GA, Shimizu Y, Newman W, Hallam J, Newman PJ, Buck CA, Shaw S: CD31 expressed on distinctive T cell subsets is a preferential amplifier of β 1 integrin-mediated adhesion. J Exp Med 1992;176:245–253.

    Article  PubMed  CAS  Google Scholar 

  16. Stewart MP, McDowall A, Hogg N: LFA-1-mediated adhesion is regulated by cytoskeletal restraint and by a Ca2+-dependent protease, calpain. J Cell Biol 1998;140:699–707.

    Article  PubMed  CAS  Google Scholar 

  17. Bazzoni G, Hemler ME: Are changes in integrin affinity and conformation overemphasized. Trends Biochem Sci 1998;23:30–34.

    Article  PubMed  CAS  Google Scholar 

  18. Stewart MP, Cabanas C, Hogg N: T cell adhesion to intercellular adhesion molecule-1 (ICAM-1) is controlled by cell spreading and the activation of integrin LFA-1. J Immunol 1996;156:1810–1817.

    PubMed  CAS  Google Scholar 

  19. Faull RJ, Kovach NL, Harlan JM, Ginsberg MH: Stimulation of integrin-mediated adhesion of T lymphocytes and monocytes: two mechanisms with divergent biological consequences. J Exp Med 1994;179:1307–1316.

    Article  PubMed  CAS  Google Scholar 

  20. Kucik DF, Dustin ML, Miller JM, Brown EJ: Adhesion-activating phorbol ester increases the mobility of leukocyte integrin LFA-1 in cultured lymphocytes. J Clin Invest 1996;97:2139–2144.

    PubMed  CAS  Google Scholar 

  21. Linsley PS, Ledbetter JA: Therole of the CD28 receptor during T cell responses to antigen. Annu Rev Immunol 1993;11:191–212.

    PubMed  CAS  Google Scholar 

  22. June CH, Bluestone JA, Nadler LM, Thompson CB: The B7 and CD28 receptor families. Immunol Today 1994;15:321–331.

    Article  PubMed  CAS  Google Scholar 

  23. Bluestone JA: New perspectives of CD28-B7-mediated T cell costimulation. Immunity 1995;2:555–559.

    Article  PubMed  CAS  Google Scholar 

  24. Thompson CB: Distinct roles for the costimulatory ligands B7-1 and B72 in T helper cell differentiation. Cell 1995;81:979–982.

    Article  PubMed  CAS  Google Scholar 

  25. Turcovski-Corrales SM, Fenton RG, Peltz G, Taub DD: CD28:B7 interactions promote T cell adhesion. Eur J Immunol 1995;25:3087–3093.

    Article  PubMed  CAS  Google Scholar 

  26. August A, Gibson S, Kawakami Y, Kawakami T, Mills GB, Dupont B: CD28 is associated with and induces the immediate tyrosine phosphorylation and activation of the Tec family kinase ITK/EMT in the human Jurkat leukemic T-cell line. Proc Natl Acad Sci USA 1994;91:9347–9351.

    Article  PubMed  CAS  Google Scholar 

  27. Lu YL, Cuevas B, Gibson S, Khan H, Lapushin R, Imboden J, Mills GB: Phosphatidylinositol 3-kinase is required for CD28 but not CD3 regulation of the TEC family tyrosine kinase EMT/ITK/TSK: Functional and physical interaction of EMT with phosphatidylinositol 3-kinase. J Immunol 1998;161:5404–5412.

    PubMed  CAS  Google Scholar 

  28. Lu Y, Granelli-Piperno A, Bjorndahl JM, Phillips CA, Trevillyan JM: CD28-induced T cell activation: Evidence for a proteintyrosine kinase signal transduction pathway. J Immunol 1992; 149:24–29.

    PubMed  CAS  Google Scholar 

  29. Fraser JD, Newton ME, Weiss A: CD28 and T cell antigen receptor signal transduction coordinately regulate interleukin 2 gene expression in response to superantigen stimulation. J Exp Med 1992;175: 1131–1134.

    Article  PubMed  CAS  Google Scholar 

  30. Raab M, Cai YC, Bunnell SC, Heyeck SD, Berg LJ, Rudd CE: p56Lck and p59Fyn regulate CD28 binding to phosphatidylinositol 3-kinase, growth factor receptorbound protein GRB-2, and T cell-specific protein-tyrosine kinase ITK: implications for T-cell costimulation. Proc Natl Acad Sci USA 1995;92:8891–8895.

    Article  PubMed  CAS  Google Scholar 

  31. Prasad KVS, Cai Y-C, Raab M, Duckworth B, Cantley L, Shoelson SE, Rudd CE: T-cell antigen CD28 interacts with the lipid kinase phosphatidylinositol 3-kinase by a cytoplasmic Tyr(P)-Met-XaaMet motif. Proc Natl Acad Sci USA 1994;91:2834–2838.

    Article  PubMed  CAS  Google Scholar 

  32. August A, Dupont B: CD28 of T lymphocytes associates with phosphatidylinositol 3-kinase. Int Immunol 1994;6:769–774.

    Article  PubMed  CAS  Google Scholar 

  33. Ward SG: CD28: a signalling perspective. Biochem J 1996;318: 361–377.

    PubMed  CAS  Google Scholar 

  34. Rudd CE: Upstream-downstream: CD28 cosignaling pathways and T cell function. Immunity 1996;4: 527–534.

    Article  PubMed  CAS  Google Scholar 

  35. Hutchcroft JE, Bierer BE: Signaling through CD28/CTLA-4 family receptors puzzling participation of phosphatidylinositol-3 kinase. J Immunol 1996;156:4071–4074.

    PubMed  CAS  Google Scholar 

  36. Fruman DA, Meyers RE, Cantley LC: Phosphoinositide kinases. Annu Rev Biochem 1998;67:481–507.

    Article  PubMed  CAS  Google Scholar 

  37. Lemmon MA, Ferguson KM: Pleckstrin homology domains. Curr Top Microbiol Immunol 1998;228:39–74.

    PubMed  CAS  Google Scholar 

  38. Marte BM, Downward J: PKB/ Akt: connecting phosphoinositide 3-kinase to cell survival and beyond. Trends Biochem Sci 1997;22:355–358.

    Article  PubMed  CAS  Google Scholar 

  39. Klippel A, Kavanaugh WM, Pot D, Williams LT: A specific product of phosphatidylinositol 3-kinase directly activates the protein kinase Akt through its pleckstrin homology domain. Mol Cell Biol 1997;17:338–344.

    PubMed  CAS  Google Scholar 

  40. Lemmon MA, Falasca M, Ferguson KM, Schlessinger J: Regulatory recruitment of signalling molecules to the cell membrane by pleckstrin-homology domains. Trends Cell Biol 1997; 7:237–242.

    Article  CAS  Google Scholar 

  41. Falasca M, Logan SK, Lehto VP, Baccante G, Lemmon MA, Schlessinger J: Activation of phospholipase Cγby PI 3-kinaseinduced PH domain-mediated membrane targeting. EMBO J 1998;17:414–422.

    Article  PubMed  CAS  Google Scholar 

  42. Nagel W, Zeitlmann L, Schilcher P, Geiger C, Kolanus J, Kolanus W: Phosphoinositide 3-OH kinase activates the β2 integrin adhesion pathway and induces membrane recruitment of cytohesin-1. J Biol Chem 1998; 273:14,853–14,861.

    Article  CAS  Google Scholar 

  43. Zell T, Hunt SW, III, Finkelstein LD, Shimizu Y: CD28-mediated upregulation of β1 integrin-mediated adhesion involves phosphatidylinositol 3-kinase. J Immunol 1996; 156:883–886.

    PubMed  CAS  Google Scholar 

  44. Zell T, Warden CS, Chan ASH, Cook ME, Dell CL, Hunt SW, III, Shimizu Y: Regulation of β1integrin-mediated adhesion by the Cbl adapter protein. Curr Biol 1998;8:814–822.

    Article  PubMed  CAS  Google Scholar 

  45. Schneider H, Prasad KVS, Shoelson SE, Rudd CE: CTLA4 binding to the lipid kinase phosphatidylinositol 3-kinase in T cells. J Exp Med 1995;181:351–355.

    Article  PubMed  CAS  Google Scholar 

  46. Chan ASH, Mobley JL, Fields GB, Shimizu Y: CD7-mediated regulation of integrin adhesiveness on human T cells involves tyrosine phosphorylation-dependent activation of phosphatidylinositol 3-kinase. J Immunol 1997;159:934–942.

    PubMed  CAS  Google Scholar 

  47. Mobley JL, Ennis E, Shimizu Y: Differential activation-dependent regulation of integrin function in cultured human T-leukemic cell lines. Blood 1994;83:1039–1050.

    PubMed  CAS  Google Scholar 

  48. Liu YC, Altman A: Cbl: complex formation and functional implications. Cell Signal 1998;10:377–385.

    Article  PubMed  CAS  Google Scholar 

  49. Lupher ML, Jr., Andoniou CE, Bonita D, Miyake S, Band H: The c-Cbl oncoprotein. Int J Biochem Cell Biol 1998;30:439–444.

    Article  PubMed  CAS  Google Scholar 

  50. Thien CB, Langdon WY:c-Cbl:a regulator of T cell receptor-mediated signalling. Immunol Cell Biol 1998;76:473–482.

    Article  PubMed  CAS  Google Scholar 

  51. Andoniou CE, Thien CBF, Langdon WY: Tumour induction by activated abl involves tyrosine phosphorylation of the product of the cbl oncogene. EMBO J 1994;13:4515–4523.

    PubMed  CAS  Google Scholar 

  52. Thien CBF, Langdon WY: Tyrosine kinase activity of the EGF receptor is enhanced by the expression of oncogenic 70Z-Cbl. Oncogene 1997;15:2909–2919.

    Article  PubMed  CAS  Google Scholar 

  53. Meuer SC, Hussey RE, Fabbi M, Fox D, Acuto O, Fitzgerald KA, Hodgdon JC, Protentis JP, Schlossman SF, Reinherz EL: An alternative pathway of T-cell activation: a functional role for the 50 kd T11 sheep erythrocyte receptor protein. Cell 1984;36:897–906.

    Article  PubMed  CAS  Google Scholar 

  54. Gollob JA, Li J, Reinherz EL, Ritz J: CD2 regulates responsiveness of activated T cells to interleukin 12. J Exp Med 1995;182:721–731.

    Article  PubMed  CAS  Google Scholar 

  55. Bell GM, Imboden JB: CD2 and the regulation of T cell anergy. J Immunol 1995; 155:2805–2807.

    PubMed  CAS  Google Scholar 

  56. Boussiotis VA, Freeman GJ, Griffin JD, Gray GS, Gribben JG, Nadler LM: CD2 is involved in maintenance and reversal of human alloantigenspecific clonal anergy. J Exp Med 1994;180:1665–1673.

    Article  PubMed  CAS  Google Scholar 

  57. Shimizu Y, Mobley JL, Finkelstein LD, Chan ASH: A role for phosphatidylinositol 3-kinase in the regulation of β1 integrin activity by the CD2 antigen. J Cell Biol 1995;131:1867–1880.

    Article  PubMed  CAS  Google Scholar 

  58. Samelson LE, Fletcher MC, Ledbetter JA, June CH: Activation of tyrosine phospholylation in human T cells via the CD2 pathway: regulation by the CD45 tyrosine phosphatase. J Immunol 1990; 145;2448–2454.

    PubMed  CAS  Google Scholar 

  59. Weiss MJ, Daley JF, Hodgdon JC, Reinherz EL: Calcium dependency of antigen-specific (T3-Ti) and alternative (T11) pathways of human T-cell activation. Proc Natl Acad Sci USA 1984;81:6836–6840.

    Article  PubMed  CAS  Google Scholar 

  60. Hahn WC, Rosenstein Y, Burakoff SJ, Bierer BE: Interaction of CD2 with its ligand lymphocyte function-associated antigen-3 induces adenosine 3′,5′-cyclic monophosphate production in T lymphocytes. J Immunol 1991;147:14–21.

    PubMed  CAS  Google Scholar 

  61. Pantaleo G, Olive D, Poggi A, Kozumbo WJ, Moretta L, Moretta A: Transmembrane signalling via the T11-dependent pathway of human T cell activation. Evidence for the involvement of 1,2 diacylglycerol and inositol phosphates. Eur J Immunol 1987;17:55–60.

    Article  PubMed  CAS  Google Scholar 

  62. Bagnasco M, Nunes J, Lopez M, Cerdan C, Pierres A, Mawas C, Olive D: T cell activation via the CD2 molecule is associated with protein kinase C translocation from the cytosol to the plasma membrane. Eur J Immunol 1989; 19:823–827.

    Article  PubMed  CAS  Google Scholar 

  63. Kivens WJ, Hunt SW, III, Mobley L, Zeil T, Dell CL, Bierer BE, Shimizu Y: Identification of a proline-rich sequence in the CD2 cytoplasmic domain critical for regulation of integrin-mediated adhesion and activation of phosphoinositide 3-kinase. Mol Cell Biol 1998;18:5291–5307.

    PubMed  CAS  Google Scholar 

  64. Danielian S, Fagard R, Alcover A, Acuto O, Fischer S: The tyrosine kinase activity of p56lck is increased in human T cells activated via CD2. Eur J Immunol 1991;21:1967–1970.

    Article  PubMed  CAS  Google Scholar 

  65. Marie-Cardine A, Fischer S, Gorvel JP, Maridonneau-Parini I: Recruitment of activated p56lck on endosomes of CD2-triggered T cells, colocalization with ZAP-70. J Biol Chem 1996;271:20,734–20,739.

    Article  CAS  Google Scholar 

  66. King PD, Sadra A, Han A, Liu JR, Sunder-Plassmann R, Reinherz EL, Dupont B: CD2 signaling in T cells involves tyrosine phosphorylation and activation of the Tec family kinase, EMT/ITK/TSK. Int Immunol 1996;8:1707–1714.

    Article  PubMed  CAS  Google Scholar 

  67. King PD, Sadra A, Teng JM, Bell GM, Dupont B: CD2-mediated activation of the Tec-family tyrosine kinase ITK is controlled by proline-rich stretch-4 of the CD2 cytoplasmic tail. Int Immunol 1998; 10:1009–1016.

    Article  PubMed  CAS  Google Scholar 

  68. Lin HM, Hutchcroft JE, Andoniou CE, Kamoun M, Band H, Bierer BE: Association of p59fyn with the T lymphocyte costimulatory receptor CD2 binding of the Fyn Src homology (SH) 3 domain is regulated by the Fyn SH2 domain. J Biol Chem 1998;273:19,914–19,921.

    CAS  Google Scholar 

  69. Nel AE, Ledbetter IA, Williams K, Ho P, Akerley B, Franklin K, Katz R: Activation of MAP-2 kinase activity by the CD2 receptor in Jurkat T cells can be reversed by CD45 phosphatase. Immunology 1991;73:129–133.

    PubMed  CAS  Google Scholar 

  70. Graves JD, Downward J, Rayter S, Warne P, Tutt AL, Glennie M, Cantrell DA: CD2 antigen mediated activation of the guanine nucleotide binding proteins p21ras in human T lymphocytes. J Immunol 1991;146:3709–3712.

    PubMed  CAS  Google Scholar 

  71. Bierer BE, Hahn WC: T cell adhesion, avidity regulation and signaling: a molecular analysis of CD2. Semin Immunol 1993;5:249–261.

    Article  PubMed  CAS  Google Scholar 

  72. Chang H-C, Moingeon P, Pedersen R, Lucich J, Stebbins C, Reinherz EL: Involvement of the PPPGHR motif in T cell activation via CD2. J Exp Med 1990;172:351–354.

    Article  PubMed  CAS  Google Scholar 

  73. Cohen GB, Ren R, Baltimore D: Modular binding domains in signal transduction proteins. Cell 1995;80:237–248.

    Article  PubMed  CAS  Google Scholar 

  74. Bell GM, Fargnoli J, Bolen JB, Kish L, Imboden JB: The SH3 domain of p56lck binds to prolinerich sequences in the cytoplasmic domain of CD2. J Exp Med 1996; 183:169–178.

    Article  PubMed  CAS  Google Scholar 

  75. Bell GM, Bolen JB, Imboden JB: Association of Src-like protein tyrosine kinases with the CD2 cell surface molecule in rat T lymphocytes and natural killer cells. Mol Cell Biol 1992;12:5548–5554.

    PubMed  CAS  Google Scholar 

  76. Carmo AM, Mason DW, Beyers AD: Physical association of the cytoplasmic domain of CD2 with the tyrosine kinases p56lck and p59fyn. Eur J Immunol 1993;23: 2196–2201.

    Article  PubMed  CAS  Google Scholar 

  77. Beyers AD, Spruyt LL, Williams AF: Molecular associations between the T-lymphocyte antigen receptor complex and the surface antigens CD2, CD4, or CD8 and CD5. Proc Natl Acad Sci USA 1992;89:2945–2949.

    Article  PubMed  CAS  Google Scholar 

  78. Gassmann M, Amrein KE, Flint NA, Schraven B, Burn P: Identification of a signaling complex involving CD2, ζ chain and p59fyn in T lymphocytes. Eur J Immunol 1994;24:139–144.

    Article  PubMed  CAS  Google Scholar 

  79. Hanke JH, Gardner JP, Dow RL, Changelian PS, Brissette WH, Weringer EJ, Pollok K, Connelly PA: Discovery of a novel, potent, and Src family-selective tyrosine kinase inhibitor study of Lckand FynT-dependent T cell activation. J Biol Chem 1996:271:695–701.

    Article  PubMed  CAS  Google Scholar 

  80. Siliciano JD, Morrow TA, Desiderio SV:itk, a T-cell-specific tyrosine kinase gene inducible by interleukin 2. Proc Natl Acad Sci USA 1992;89:11,194–11,198.

    Article  CAS  Google Scholar 

  81. August A, Sadra A, Dupont B, Hanafusa H: Src-induced activation of inducible T cell kinase (ITK) requires phosphatidylinositol 3-kinase activity and the pleckstrin homology domain of inducible T cell kinase. Proc Natl Acad Sci USA 1997;94:11,227–11,232.

    Article  CAS  Google Scholar 

  82. Dustin ML, Olszowy MW, Holdorf AD, Li J, Bromley S, Desai N, Widder P, Rosenberger F, Van der Merwe PA, Allen PM, Shaw AS: A novel adaptor protein orchestrates receptor patterning and cytoskeletal polarity in T-cell contacts. Cell 1998;94:667–677.

    Article  PubMed  CAS  Google Scholar 

  83. Cantrell D: T cell antigen receptor signal transduction pathways. Annu Rev Immunol 1996;14:259–274.

    Article  PubMed  CAS  Google Scholar 

  84. Qian DP, Weiss A: T cell antigen receptor signal transduction. Curr Opin Cell Biol 1997;9:205–212.

    Article  PubMed  CAS  Google Scholar 

  85. Cambier JC: Antigen and Fc receptor signaling. The awesome power of the immunoreceptor tyrosine-based activation motif. J Immunol 1995;155:3281–3285.

    PubMed  CAS  Google Scholar 

  86. Sussman JJ, Bonifacino JS, Lippincott-Schwartz J, Weissman AM, Saito T, Klausner RD, Ashwell JD: Failure to synthesize the T cell CD3-ζ chain: structure and function of a partial T cell receptor complex. Cell 1988;52:85–95.

    Article  PubMed  CAS  Google Scholar 

  87. Wegener A-MK, Letourneur F, Hoeveler A, Brocker T, Luton F, Malissen B: The T cell receptor/ CD3 complex is composed of at least two autonomous transduction modules. Cell 1992;68:83–95.

    Article  PubMed  CAS  Google Scholar 

  88. Letourneur F, Klausner RD: Activation of T cells by a tyrosine kinase activation domain in the cytoplasmic tail of CD3 ε. Science 1992;255:79–82.

    Article  PubMed  CAS  Google Scholar 

  89. Shinkai Y, Ma A, Cheng HL, Alt FW: CD3 e and CD3 ζ cytoplasmic domains can independently generate signals for T cell development and function. Immunity 1995;2:401–411.

    Article  PubMed  CAS  Google Scholar 

  90. Frank SJ, Niklinska BB, Orloff DG, Mercep M, Ashwell JD, Klausner RD: Structural mutations of the T cell receptor ζ chain and its role in T cell activation. Science 1990;249:174–177.

    Article  PubMed  CAS  Google Scholar 

  91. Wegener A-MK, Malissen B: Analysis of the (YXXL/I)2 signalling motifs found in the cytoplasmic segment of the mouse CD3-ζ chain. Adv Exp Med Biol 1994;365:45–51.

    PubMed  CAS  Google Scholar 

  92. Combadiere B, Freedman B, Chen L, Shores EW, Love P, Lenardo MJ: Qualitative and quantitative contributions of the T cell receptor ζ chain to mature T cell apoptosis. J Exp Med 1996;183:2109–2117.

    Article  PubMed  CAS  Google Scholar 

  93. Romeo C, Seed B: Cellular immunity to HIV activated by CD4 fused to T cell or Fc receptor polypeptides. Cell 1991;64:1037–1046.

    Article  PubMed  CAS  Google Scholar 

  94. Irving BA, Weiss A: The cytoplasmic domain of the T cell receptor ζ chain is sufficient to couple to receptor-associated signal transduction pathways. Cell 1991;64:891–901.

    Article  PubMed  CAS  Google Scholar 

  95. Romeo C, Amiot M, Seed B: Sequence requirements for induction of cytolysis by the T cell antigen/ Fc receptor ζ chain. Cell 1992;68: 889–897.

    Article  PubMed  CAS  Google Scholar 

  96. Weiss A, Littman DR: Signal transduction by lymphocyte antigen receptors. Cell 1994;76:263–274.

    Article  PubMed  CAS  Google Scholar 

  97. Chan AC, Shaw AS: Regulation of antigen receptor signal transduction by protein tyrosine kinases. Curr Opin Immunol 1996; 8:394–401.

    Article  PubMed  CAS  Google Scholar 

  98. Wange RL, Samelson LE: Complex complexes: signaling at the TCR. Immunity 1996;5:197–205.

    Article  PubMed  CAS  Google Scholar 

  99. Songyang Z, Shoelson SE, Chandhuri M, Gish G, Pawson T, Haser WG, et al.: SH2 domains recognize specific phosphopeptide sequences. Cell 1993;72:767–778.

    Article  PubMed  CAS  Google Scholar 

  100. Songyang Z, Shoelson SE, McGlade J, Olivier P, Pawson T, Bustelo XR, Barbacid M, Sabe H, Hanafusa H, Yi T: Specific motifs recognized by the SH2 domains of Csk, 3BP2, fps/fes, GRB-2, HCP, SHC, Syk, and Vav. Mol Cell Biol 1994; 14:2777–2785.

    PubMed  CAS  Google Scholar 

  101. Zhang WG, Sloan-Lancaster J, Kitchen J, Trible RP, Samelson LE: LAT: the ZAP-70 tyrosine kinase substrate that links T cell receptor to cellular activation. Cell 1998;92:83–92.

    Article  PubMed  CAS  Google Scholar 

  102. van Kooyk Y, Weder P, Heije K, De Waal Malefijt R, Figdor CG: Role of intracellular Ca2+ levels in the regulation of CD11a/CD18 mediated cell adhesion. Cell Adhes Commun 1993;l:21–32.

    Article  Google Scholar 

  103. Hauss P, Mazerolles F, Hivroz C, Lecomte O, Barbat C, Fischer A: GF109203X, a specific PKC inhibitor, abrogates anti-CD3 antibody-induced upregulation of CD4+ T cell adhesion to B cells. Cell Immunol 1993;150:439–446.

    Article  PubMed  CAS  Google Scholar 

  104. Pardi R, Inverardi L, Rugarli C, Bender JR: Antigen-receptor complex stimulation triggers protein kinase C-dependent CD1la/CDl8-cytoskeleton association in T lymphocytes. J Cell Biol 1992;116: 1211–1220.

    Article  PubMed  CAS  Google Scholar 

  105. Kupfer A, Singer SJ: The specific interaction of helper T cells and antigen-presenting B cells. IV. Membrane and cytoskeletal reorganizations in the bound T cell as a function of antigen dose. J Exp Med 1989;170:1697–1714.

    Article  PubMed  CAS  Google Scholar 

  106. Jakubowski A, Rosa MD, Bixler S, Lobb R, Burkly LC: Vascular cell adhesion molecule (VCAM)-Ig fusion protein defines distinct affinity states of the very late antigen-4 (VLA-4) receptor. Cell Adhes Commun 1995;3:131–142.

    Article  PubMed  CAS  Google Scholar 

  107. Downward J, Graves JD, Warne PH, Rayter S, Cantrell DA: Stimulation of p21ras upon T-cell activation. Nature 1990;346:719–712.

    Article  PubMed  CAS  Google Scholar 

  108. Mobley JL, Ennis E, Shimizu Y: Isolation and characterization of cell lines with genetically distinct mutations downstream of protein kinase C that result in defective activation-dependent regulation of T cell integrin function. J Immunol 1996;156:948–956.

    PubMed  CAS  Google Scholar 

  109. O’Rourke AM, Shao H, Kaye J: Cutting edge: a role for p21ras/ MAP kinase in TCR-mediated activation of LFA-1. J Immunol 1998;161:5800–5803.

    PubMed  CAS  Google Scholar 

  110. Rodriguez-Viciana P, Warne PH, Khwaja A, Marte BM, Pappin D, Das P, Waterfield MD, Ridley A, Downward J: Role of phosphoinositide 3-OH kinase in cell transformation and control of the actin cytoskeleton by Ras. Cell 1997; 89:457–467.

    Article  PubMed  CAS  Google Scholar 

  111. Zhang ZH, Vuori K, Wang HG, Reed JC, Ruoslahti E: Integrin activation by R-ras. Cell 1996;85:61–69.

    Article  PubMed  CAS  Google Scholar 

  112. Marte BM, Rodriguez-Viciana P, Wennström S, Warne PH, Downward J: R-Ras can activate the phosphoinositide 3-kinase but not the MAP kinase arm of the Ras effector pathways. Curr Biol 1997;7:63–70.

    Article  PubMed  CAS  Google Scholar 

  113. Shimizu Y, Hunt SW, III: Regulating integrin-mediated adhesion: one more function for PI 3-kinase? Immunol Today 1996;17:565–573.

    Article  PubMed  CAS  Google Scholar 

  114. Exley M, Varticovski L, Peter M, Sancho J, Terhorst C: Association of phosphatidylinositol 3-kinase with a specific sequence of the T cell receptor ζ chain is dependent on T cell activation. J Biol Chem 1994;269:15,140–15,146.

    CAS  Google Scholar 

  115. Osman N, Turner H, Lucas S, Reif K, Cantrell DA: The protein interactions of the immunoglobulin receptor family tyrosine-based activation motifs present in the T cell receptor ζ subunit and the CD3 ζ, δ, and ε chains. Eur J Immunol 1996;26:1063–1068.

    Article  PubMed  CAS  Google Scholar 

  116. De Aós I, Metzger MH, Exley M, Dahl CE, Misra S, Zheng DX, Varticovski L, Terhorst C, Sancho J: Tyrosine phosphory lation of the CD3-ε subunit of the T cell antigen receptor mediates enhanced association with phosphatidylinositol 3-kinase in Jurkat T cells. J Biol Chem 1997;272:25,310–25,318.

    Google Scholar 

  117. Clark MR, Campbell KS, Kazlauskas A, Johnson SA, Hertz M, Potter TA, Pleiman C, Cambier JC: The B cell antigen receptor complex: association of Ig-α and Ig-β with distinct cytoplasmic effectors. Science 1992;258:123–126.

    Article  PubMed  CAS  Google Scholar 

  118. Tuscano JM, Engel P, Tedder TF, Agarwal A, Kehrl JH: Involvement of p72syk kinase, p53/56lyn kinase and phosphatidyl inositol3 kinase in signal transduction via the human B lymphocyte antigen CD22. Eur J Immunol 1996;26: 1246–1252.

    Article  PubMed  CAS  Google Scholar 

  119. Ward SG, June CH, Olive D: PI 3-kinase: a pivotal pathway in T-cell activation? Immunol Today 1996; 17:187–197.

    Article  PubMed  CAS  Google Scholar 

  120. Stein PH, Fraser JD, Weiss A: The cytoplasmic domain of CD28 is both necessary and sufficient for costimulation of interleukin-2 secretion and association with phosphatidylinositol 3′-kinase. Mol Cell Biol 1994; 14:3392–3402.

    PubMed  CAS  Google Scholar 

  121. Fukazawa T, Reedquist KA, Panchamoorthy G, Soltoff S, Trub T, Druker B, Cantley L, Shoelson SE, Band H: T cell activation-dependent association between the p85 subunit of the phosphatidylinositol 3-kinase and Grb2/phospholipase C-gl-binding phosphotyrosyl protein pp36/38. J Biol Chem 1995;270:20,177–20,182.

    CAS  Google Scholar 

  122. Downward J: Role of phosphoinositide-3-OH kinase in Ras signaling. Adv Second Messenger Phosphoprotein Res 1997;31:1–10.

    PubMed  CAS  Google Scholar 

  123. Bruyns E, Marie-Cardine A, Kirchgessner H, Sagolla K, Shevchenko A, Mann M, Autschbach F, Bensussan A, Meuer S, Schraven B: T cell receptor (TCR) interacting molecule (TRIM), a novel disulfide-linked dimer associated with the TCR-CD3-ζ complex, recruits intracellular signaling proteins to the plasma membrane. J Exp Med 1998;188:561–575.

    Article  PubMed  CAS  Google Scholar 

  124. Kolanus W, Nagel W, Schiller B, Zeitlmann L, Godar S, Stockinger H, Seed B: αLβ2 integrin/LFA-1 binding to ICAM-1 induced by cytohesin1, a cytoplasmic regulatory molecule. Cell 1996;86:233–242.

    Article  PubMed  CAS  Google Scholar 

  125. Klarlund JK, Guilherme A, Holik JJ, Virbasius JV, Chawla A, Czech MP: Signaling by phosphoinositide-3,4,5 -trisphosphate through proteins containing pleckstrin and Sec7 homology domains. Science 1997;275:1927–1930.

    Article  PubMed  CAS  Google Scholar 

  126. Le Good JA, Ziegler WH, Parekh DB, Alessi DR, Cohen P, Parker PJ: Protein kinase C isotypes controlled by phosphoinositide 3-kinase through the protein kinase PDK1. Science 1998;281:2042–2045.

    Article  PubMed  Google Scholar 

  127. Chou MM, Hou WM, Johnson J, Graham LK, Lee MH, Chen CS, Newton AC, Schaffhausen BS, Toker A: Regulation of protein kinase C ζ by PI 3-kinase and PDK-1. Curr Biol 1998;8:1069–1077.

    Article  PubMed  CAS  Google Scholar 

  128. D’Souza-Schorey C, Boettner B, Van Aelst L: Rac regulates integrin-mediated spreading and increased adhesion of T lymphocytes. Mol Cell Biol 1998;18: 3936–3946.

    PubMed  CAS  Google Scholar 

  129. Michiels F, Stam JC, Hordijk PL, Van der Kammen RA, Ruuls-Van Stalle L, Feltkamp CA, Collard JG: Regulated membrane localization of Tiam 1, mediated by the NH2-terminal pleckstrin homology domain, is required for Racdependent membrane ruffling and c-jun NH2-terminal kinase activation. J Cell Biol 1997;137:387–398.

    Article  PubMed  CAS  Google Scholar 

  130. Stam JC, Sander EE, Michiels F, Van Leeuwen FN, Kain HET, Van der Kammen RA, Collard JG: Targeting of Tiam1 to the plasma membrane requires the cooperative function of the N-terminal pleckstrin homology domain and an adjacent protein interaction domain. J Biol Chem 1997;272: 28,447–28,454.

    Article  CAS  Google Scholar 

  131. Sander EE, van Delft S, ten Klooster JP, Reid T, Van der Kammen RA, Michiels F, Collard JG: Matrix-dependent Tiam1/Rac signaling in epithelial cells promotes either cell-cell adhesion or cell migration and is regulated by phosphatidylinositol 3-kinase. J Cell Biol 1998;143:1385–1398.

    Article  PubMed  CAS  Google Scholar 

  132. Roach TI, Slater SE, White LS, Zhang XL, Majerus PW, Brown EJ, Thomas ML: The protein tyrosine phosphatase SHP-1 regulates integrin-mediated adhesion of macrophages. Curr Biol 1998; 8:1035–1038.

    Article  PubMed  CAS  Google Scholar 

  133. Helgason CD, Damen JE, Rosten P, Grewal R, Sorenson P, Chappel SM, Borowski A, Jirik F, Krystal G, Humphries RK: Targeted disruption of SHIP leads to hemopoietic perturbations, lung pathology, and a shortened life span. Genes Dev 1998;12:1610–1620.

    PubMed  CAS  Google Scholar 

  134. Tamura M, Gu J, Matusmoto K, Aota S, Parsons R, Yamada KM: Inhibition of cell migration, spreading, and focal adhesions by tumor suppressor PTEN. Science 1998;280:1614–1617.

    Article  PubMed  CAS  Google Scholar 

  135. Gu J, Tamura M, Yamada KM: Tumor suppressor PTEN inhibits integrinand growth factor-mediated mitogen-activated protein (MAP) kinase signaling pathways. J Cell Biol 1998;143:1375–1383.

    Article  PubMed  CAS  Google Scholar 

  136. Maehama T, Dixon JE: The tumor suppressor, PTEN/ MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5trisphosphate. J Biol Chem 1998;273:13,375–13,378.

    Article  CAS  Google Scholar 

  137. Serve H, Yee NS, Stella G, Sepp-Lorenzino L, Tan JC, Besmer P: Differential roles of PI 3-kinase and kit tyrosine 821 in kit receptor-mediated proliferation, survival and cell adhesion in mast cells. EMBO J 1995;14:473–483.

    PubMed  CAS  Google Scholar 

  138. Kinashi T, Springer TA: Steel factor and c-kit regulate cellmatrix adhesion. Blood 1994;83:1033–1038.

    PubMed  CAS  Google Scholar 

  139. Vosseller K, Stella G, Yee NS, Besmer P: c-Kit receptor signaling through its phosphatidylinositide3′-kinase-binding site and protein kinase C: role in mast cell enhancement of degranulation, adhesion, and membrane ruffling. Mol Biol Cell 1997;8:909–922.

    PubMed  CAS  Google Scholar 

  140. Kinashi T, Escobedo JA, Williams LT, Takatsu K, Springer TA: Receptor tyrosine kinase stimulates cell-matrix adhesion by phosphatidylinositol 3 kinase and phospholipase C-γ1 pathways. Blood 1995;86: 2086–2090.

    PubMed  CAS  Google Scholar 

  141. Adelsman MA, McCarthy JB, Shimizu Y: Stimulation of β1 integrin function by epidermal growth factor and heregulin-β has distinct requirements for erbB2 but a similar dependence on PI 3-kinase. Mol Biol Cell 1999; In press.

  142. Jones SL, Knaus UG, Bokoch GM, Brown EJ: Two signaling mechanisms for activation of αMβ2 avidity in polymorphonuclear neutrophils. J Biol Chem 1998;273:10,556–10,566.

    CAS  Google Scholar 

  143. Zauli G, Bassini A, Vitale M, Gibellini D, Celeghini C, Caramelli E, Pierpaoli S, Guidotti L, Capitani S: Thrombopoietin enhances the αIIbβ3-dependent adhesion of megakaryocytic cells to fibrinogen or fibronectin through PI 3 kinase. Blood 1997;89:883–895.

    PubMed  CAS  Google Scholar 

  144. Turner L, Ward SG, Westwick J: RANTES-activated human T lymphocytes. A role for phosphoinosiude 3-kinase. J Immunol 1995;155:2437–2444.

    PubMed  CAS  Google Scholar 

  145. Laudanna C, Mochly-Rosen D, Liron T, Constantin G, Butcher EC: Evidence of ζ protein kinase C involvement in polymorphonuclear neutrophil integrin-dependent adhesion and chemotaxis. J Biol Chem 1998;273:30,306–30,315.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zeil, T., Kivens, W.J., Kellermann, SA. et al. Regulation of integrin function by T cell activation. Immunol Res 20, 127–145 (1999). https://doi.org/10.1007/BF02786469

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02786469

Key words

Navigation