Skip to main content
Log in

Immunological self/nonself discrimination

Integration of self vs nonself during cognate T cell interactions with antigen-presenting cells

  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

The hypothesis is presented that immunological integration of nonefficacious vs efficacious T cell antigen receptor (TCR) signals are foundational for self/nonself discrimination and that multiple integrative mechanisms are intrinsic to the molecular to molar organization of an adaptive immune response. These integrative mechanisms are proposed to adaptively regulate expression of costimulatory signals, such that foreign proteins are associated with the expression of costimulatory signals, whereas self-proteins are associated with the lack of costimulatory signaling. Overall, this model offers several unique contributions to the study of immunology. First, this model postulates that cognate TCR/major histocompatibility complex (MHC) interactions are sufficient to adaptively mediate immunological self/nonself discrimination. This model thereby offers a unique alternative to models that largely rely on innate immunity to prime immune discrimination. Second, the integrative model argues that the immune system can simultaneously reinforce self-tolerance and promote immunity to foreign organisms at the same time and in the same location. Many alternative models presume that pathogenic self-reactive T cells do not exist at the outset of an immune response against foreign agents. Third, the integrative model uniquely predicts relationships between immunodeficiency and autoimmune pathogenesis. Fourth, this model illustrates the regulatory advantages of cognate antigen presenting cell (APC) systems (i.e., T cell or B cell APC) compared to nonspecific APC. Cognate APC systems together with the respective clonotypic responders may comprise a fundamental “network” of lymphoid cells. Such networks would have clone-specific regulatory capabilities and may be central for immunological self/nonself discrimination. Fifth, this model provides an explanation for “infectious” tolerance without creating specialized subsets of “suppressor” or “regulatory” T cells. Each mature T cell retains the potential to reinforce tolerance or mediate immunity, depending on the specific antigenic cues present in the immediate environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Van Parijs L, Abbas AK: Homeostasis and self-tolerance in the immune system: turning lymphocytes off [Review] [50 refs]. Science 1998;280:243–248.

    Article  PubMed  Google Scholar 

  2. King C, Sarvetnick N: Organ-specific autoimmunity [Review] [75 refs]. Curr Opinion Immunol 1997; 9:863–871.

    Article  CAS  Google Scholar 

  3. Del Prete G: The concept of type-1 and type-2 helper T cells and their cytokines in humans [Review] [120 refs]. Intern Rev Immunol 1998;16:427–455.

    Google Scholar 

  4. Romagnani S, Parronchi P, D’Elios MM, Romagnani P, Annunziato F, Piccinni MP, et al.: An update on human Thl and Th2 cells [Review] [30 refs]. Intern Arch Allergy Immunol 1997;] 13:153–156.

    Google Scholar 

  5. Adorini L, Trembleau S: Immune deviation towards Th2 inhibits Th-1-mediated autoimmune diabetes [Review] [58 refs]. Biochem Soc Trans 1997;25:625–629.

    PubMed  CAS  Google Scholar 

  6. Shaw AS, Dustin ML: Making the T cell receptor go the distance: a topological view of T cell activation [Review] [58 refs]. Immunity 1997;6:361–369.

    Article  PubMed  CAS  Google Scholar 

  7. Marks MS: Protein sorting within the MHC class II antigen-processing pathway [Review] [124 refs]. Immunol Res 1998; 17: 141–154.

    PubMed  CAS  Google Scholar 

  8. Whitton JL: An overview of antigen presentation and its central role in the immune response [Review] [24 refs]. Curr Top Microbiol Immunol 1998;232:1–13.

    PubMed  CAS  Google Scholar 

  9. Engering A, Lefkovits I, Pieters J: Analysis of subcellular organelles involved in major histocompatibility complex (MHC) class II-restricted antigen presentation by electrophoresis [Review] [56 refs]. Electrophoresis 1997;18:2523–2530.

    Article  PubMed  CAS  Google Scholar 

  10. Grewal IS, Flavell RA: The role of CD40 ligand in costimulation and T-cell activation [Review] [100 refs]. Immunol Rev 1996; 153:85–106.

    Article  PubMed  CAS  Google Scholar 

  11. Grewal IS, Foellmer HG, Grewal KD, Xu J, Hardardottir F, Baron JL, et al.: Requirement for CD40 ligand in costimulation induction, T cell activation, and experimental allergic encephalomyelitis. Science 1996;273:1864–1867.

    Article  PubMed  CAS  Google Scholar 

  12. Guo Y, Wu Y, Shinde S, Sy MS, Aruffo A, Liu Y: Identification of a costimulatory molecule rapidly induced by CD40L as CD44H. J Exp Med 1996; 184:955–961.

    Article  PubMed  CAS  Google Scholar 

  13. Shinde S, Wu Y, Guo Y, Niu Q, Xu J, Grewal IS, Flavell R, Liu Y: CD40L is important for induction of, but not response to, costimulatory activity. ICAM-1 as the second costimulatory molecule rapidly up-regulated by CD40L. J Immunol 1996;157:2764–2768.

    PubMed  CAS  Google Scholar 

  14. Yang Y, Wilson JM:CD401iganddependent T cell activation: requirement of B7-CD28 signaling through CD40. Science 1996; 273:1862–1864.

    Article  PubMed  CAS  Google Scholar 

  15. Goldstein MD, Debenedette MA, Hollenbaugh D, Watts TH: Induction of costimulatory molecules B7-1 and B7-2 in murine B cells. the CBA/N mouse reveals a role for Bruton’s tyrosine kinase in CD40-mediated B7 induction. Mol Immunol 1996;33:541–552.

    Article  PubMed  CAS  Google Scholar 

  16. Mackey MF, Barth RJ Jr, Noelle RJ: The role of CD40/CD154 interactions in the priming, differentiation, and effector function of helper and cytotoxic T cells [Review] [105 refs]. J Leuk Biol 1998;63:418–428.

    CAS  Google Scholar 

  17. Lechler R, Marelli-Berg FM: Mechanisms of peripheral T-cell tolerance [Review] [33refs]. J Viral Hepatitis 1997;4 Suppl 2:1–5.

    Google Scholar 

  18. Lu P, Wang YL, Linsley PS: Regulation of self-tolerance by CD80/CD86 interactions [Review] [34 refs]. Curr Opinion Immunol 1997;9:858–862.

    Article  CAS  Google Scholar 

  19. Schweitzer AN, Sharpe AH: The complexity of the B7-CD28/ CTLA-4 costimulatory pathway [Review] [48 refs]. Agents & Actions Suppl. 1998;49:33–43.

    CAS  Google Scholar 

  20. Tivol EA, Schweitzer AN, Sharpe AH: Costimulation and autoimmunity [Review] [66 refs]. Curr Opinion Immunol 1996;8:822–830.

    Article  CAS  Google Scholar 

  21. Gill RG, Coulombe M, Lafferty KJ: Pancreatic islet allograft immunity and tolerance: the two-signal hypothesis revisited [Review] [94 refs]. Immunol Rev 1996;149:75–96.

    Article  PubMed  CAS  Google Scholar 

  22. Schultze J, Nadler LM, Gribben JG: B7-mediated costimulation and the immune response [Review] [107 refs]. Blood Reviews 1996; 10:111–127.

    Article  PubMed  CAS  Google Scholar 

  23. Lenschow DJ, Walunas TL, Bluestone JA: CD28/B7 system of T cell costimulation [Review] [117 refs]. AnnuRev Immunol 1996; 14:233–258.

    Article  CAS  Google Scholar 

  24. Kisielow P, Miazek A: Thymic selection and tolerance [Review] [34 refs]. Transplant Proc 1996; 28:3429–3430.

    PubMed  CAS  Google Scholar 

  25. Teh HS, Motyka B, Teh SJ:Influence of the affinity of selecting ligands on T cell positive and negative selection and the functional maturity of the positively selected Tcells [Review] [52refs]. Crit Rev Immunol 1997;17:399–410.

    PubMed  CAS  Google Scholar 

  26. Bevan MJ: In thymic selection, peptide diversity gives and takes away [Review] [16 refs]. Immunity 1997;7:175–178.

    Article  PubMed  CAS  Google Scholar 

  27. Fowlkes BJ, Schweighoffer E: Positive selection of T cells [Review] [54 refs]. Curr Opinion Immunol 1995;7:188–195.

    Article  CAS  Google Scholar 

  28. Kalwy S, Marty MC, Bausero P, Pessac B: Myelin basic proteinrelated proteins in mouse brain and immune tissues. J Neurochem 1998;70:435–438.

    Article  PubMed  CAS  Google Scholar 

  29. Kuramoto H, Hozumi I, Inuzuka T, Sato S: Occurrence of myelinassociated glycoprotein (MAG)like immunoreactivity in some nervous, endocrine, and immunerelated cells of the rat. An immunohistochemical study. Mol Chem Neuropathol 1997;31:85–94.

    PubMed  CAS  Google Scholar 

  30. Kojima K, Reindl M, Lassmann H, Wekerle H, Linington C: The thymus and self-tolerance: co-existence of encephalitogenic SI00 beta-specific T cells and their nominal autoantigen in the normal adult rat thymus. Intern Immunol 1997:9:897–904.

    Article  CAS  Google Scholar 

  31. Pribyl TM, Campagnoni CW, Kampf K, Kashima T, Handley VW, McMahon J, et al.: Expression of the myelin proteolipid protein gene in the human fetal thymus. J Neuroimmunol 1996; 67:125–130.

    Article  PubMed  CAS  Google Scholar 

  32. Fritz RB, Kalvakolanu I: Thymic expression of the golli-myelin basic protein gene in the SJL/J mouse. J Neuroimmunol 1995;57: 93–99.

    Article  PubMed  CAS  Google Scholar 

  33. Pribyl TM, Campagnoni CW, Kampf K, Kashima T, Handley VW, McMahon J, et al.: The human myelin basic protein gene is included within a 179-kilobase transcription unit: expression in the immune and central nervous systems. Proc Natl Acad Sci USA 1993;90:10,695–10,699.

    Article  CAS  Google Scholar 

  34. Mathisen PM, Pease S, Garvey J, Hood L, Readhead C: Identification of an embryonic isoform of myelin basic protein that is expressed widely in the mouse embryo. Proc Natl Acad Sci USA 1993;90:10,125–10,129.

    Article  CAS  Google Scholar 

  35. Castro JE, Listman JA, Jacobson BA, Wang Y, Lopez PA, Ju S, et al.: Fas modulation of apoptosis during negative selection of thymocytes. Immunity 1996;5:617–627.

    Article  PubMed  CAS  Google Scholar 

  36. Noda S, Kosugi A, Saitoh S, Narumiya S, Hamaoka T: Protection from anti-TCR/CD3-induced apoptosis in immature thymocytes by a signal through thymic shared antigen-l/stem cell antigen-2. J Exp Med 1996;183: 2355–2360.

    Article  PubMed  CAS  Google Scholar 

  37. von Boehmer H:Thymic selection: a matter of life and death. Immunol Today 1992;13:454–458.

    Article  Google Scholar 

  38. Janeway CA Jr:Thymic selection: two pathways to life and two to death [Review] [47 refs]. Immunity 1994;1:3–6.

    Article  PubMed  CAS  Google Scholar 

  39. Robey E, Fowlkes BJ: Selective events in T cell development [Review] [120 refs]. Annu Rev Immunol 1994; 12:675–705.

    Article  PubMed  CAS  Google Scholar 

  40. Wang R, Nelson A, Kimachi K, Grey HM, Farr AG: The role of peptides in thymic positive selection of class II major histocompatibility complex-restricted T cells. Proc Natl Acad Sci USA 1998; 95:3804–3809.

    Article  PubMed  CAS  Google Scholar 

  41. Ignatowicz L, Rees W, Pacholczyk R, Ignatowicz H, Kushnir E, Kappler J, et al.: T cells can be activated by peptides that are unrelated in sequence to their selecting peptide. Immunity 1997;7:179–186.

    Article  PubMed  CAS  Google Scholar 

  42. Surh CD, Lee DS, Fung-Leung WP, Karlsson L, Sprent J: Thymic selection by a single MHC/peptide ligand produces a semidiverse repertoire of CD4+ T cells. Immunity 1997;7:209–219.

    Article  PubMed  CAS  Google Scholar 

  43. Hu Q, Bazemore Walker CR, Girao C, Opferman JT, Sun J, Shabanowitz J, et al.: Specific recognition of thymic self-peptides induces the positive selection of cytotoxic T lymphocytes. Immunity 1997;7:221–231.

    Article  PubMed  CAS  Google Scholar 

  44. Hogquist KA, Tomlinson AJ, Kieper WC, McGargill MA, Hart MC, Naylor S, et al.: Identification of a naturally occurring ligand for thymic positive selection. Immunity 1997;6:389–399.

    Article  PubMed  CAS  Google Scholar 

  45. Barnden MJ, Heath WR, Rodda S, Carbone, FR: Peptide antagonists that promote positive selection are inefficient at T cell activation and thymocyte deletion. Eur J Immunol 1994;24:2452–2456.

    Article  PubMed  CAS  Google Scholar 

  46. Girao C, Hu Q, Sun J, AshtonRickardt PG: Limits to the differential avidity model of T cell selection in the thymus. J Immunol 1997;159:4205–4211.

    PubMed  CAS  Google Scholar 

  47. Jameson SC, Hogquist KA, Bevan MJ: Positive selection of thymocytes. Annu Rev Immunol 1995; 13:93–126.

    Article  PubMed  CAS  Google Scholar 

  48. Hogquist KA, Bevan MJ: The nature of the peptide/MHC ligand involved in positive selection. Sem Immunol1996;8:63–68.

    Article  CAS  Google Scholar 

  49. Hogquist KA, Jameson SC, Heath WR, Howard JL, Bevan MJ, Carbone, FR: T cell receptor antagonist peptides induce positive selection. Cell 1994;76:17–27.

    Article  PubMed  CAS  Google Scholar 

  50. Pawlowski TJ, Singleton MD, Loh DY, Berg R, Staerz UD: Permissive recognition duringpositive selection. Eur J Immunol 1996;26: 851–857.

    Article  PubMed  CAS  Google Scholar 

  51. Jameson SC, Hogquist KA, Bevan MJ: Specificity and flexibility in thymic selection. Nature 1994; 369:750–752.

    Article  PubMed  CAS  Google Scholar 

  52. Barnden MJ, Heath WR, Carbone FR: Down-modulation of CD8 beta-chain in response to an altered peptide ligand enables developing thymocytes to escape negative selection. Cell Immunol 1997;175:111–119.

    Article  PubMed  CAS  Google Scholar 

  53. Jameson SC, Bevan MJ: T-cell selection [In Process Citation]. Curr Opinion Immunol 1998;10: 214–219.

    Article  CAS  Google Scholar 

  54. Lafferty KJ, Prowse SJ, Simeonovic CJ, Warren HS: Immunobiology of tissue transplantation: a return to the passenger leukocyte concept [Review] [116 refs]. Annu Rev Immunol 1983; 1:143–173.

    Article  PubMed  CAS  Google Scholar 

  55. Janeway CA Jr: The immune system evolved to discriminate infectious nonself from noninfectious self [Review] [38 refs]. Immunol Today 1992;13:11–16.

    Article  PubMed  CAS  Google Scholar 

  56. Janeway CA Jr, Goodnow CC, Medzhitov R: Danger pathogen on the premises: Immunological tolerance [Review] [20 refs]. Curr Biol 1996;6:519–522.

    Article  PubMed  CAS  Google Scholar 

  57. Medzhitov R, Janeway CAJr: Innate immunity: impact on the adaptive immune response [Review] [40 refs]. Curr Opinion Immunol 1997;9:4–9.

    Article  CAS  Google Scholar 

  58. Medzhitov R, Janeway CA Jr: Innate immunity: the virtues of a nonclonal system of recognition [Review] [17 refs]. Cell 1997;91: 295–298.

    Article  PubMed  CAS  Google Scholar 

  59. Fenton RG, Longo DL: Danger vs tolerance: paradigms for future studies of tumor-specific cytotoxic T lymphocytes [editorial; comment] [Review] [28 refs]. J Natl Can Inst 1997;89:272–275.

    Article  CAS  Google Scholar 

  60. Matzinger P: Tolerance, danger, and the extended family [Review] [157 refs]. Annu Rev Immunol 1994;12:991–1045.

    PubMed  CAS  Google Scholar 

  61. Sousa CR, Hieny S, Scharton-Kersten T, Jankovic D, Charest H, Germain RN, et al.: In vivo microbial stimulation induces rapid CD40 ligand-independent production of interleukin 12 by dendritic cells and their redistribution to T cell areas [see comments]. J Exp Med 1997;186:1819–1829.

    Article  Google Scholar 

  62. Mannie MD: Immune discrimination of self and nonself: a unified theory for the induction of self tolerance among thymocytes and mature peripheral T cells. Med Hypotheses 1993;40:105–112.

    Article  PubMed  CAS  Google Scholar 

  63. Bretscher P, Cohn M: A theory of self-nonself discrimination. Science 1970;169:1042–1049.

    Article  PubMed  CAS  Google Scholar 

  64. Mueller DL, Jenkins MK, Schwartz RH: Clonal expansion vs functional clonal inactivation: a costimulatory signalling pathway determines the outcome of T cell antigen receptor occupancy. Annu Rev Immunol 1989;7:445–480.

    PubMed  CAS  Google Scholar 

  65. Purbhoo MA, Sewell AK, Klenerman P, Goulder PJ, Hilyard KL, Bell JI, et al.: Copresentation of natural HIV-1 agonist and antagonist ligands fails to induce the T cell receptor signaling cascade. Proc Natl Acad Sci USA 1998;95: 4527–4532.

    Article  PubMed  CAS  Google Scholar 

  66. Totsuka M, Furukawa S, Sato E, Ametani A, Kaminogawa S: Antigen-specific inhibition of CD4+ T-cell responses to beta-lactoglobulin by its single amino acidsubstituted mutant form through T-cell receptor antagonism. Cytotechnology 1997;25:115–126.

    Article  PubMed  CAS  Google Scholar 

  67. Viola A, Linkert S, Lanzavecchia A: A T cell receptor (TCR) antagonist competitively inhibits serial TCR triggering by low-affinity ligands, but does not affect triggering by high-affinity anti-CD3 antibodies. Eur J Immunol 1997; 27:3080–3083.

    Article  PubMed  CAS  Google Scholar 

  68. La Face DM, Couture C, Anderson K, Shih G, Alexander J, Sette A, et al.: Differential T cell signaling induced by antagonist peptide-MHC complexes and the associated phenotypic responses. J Immunol 1997; 158:2057–2064.

    PubMed  Google Scholar 

  69. Liu C, Goldstein J, Graziano RF, He J, O’Shea JK, Deo Y, et al: F(c)gammaRI-targeted fusion proteins result in efficient presentation by human monocytes of antigenic and antagonist T cell epitopes. J Clin Invest 1996:98: 2001–2007.

    PubMed  CAS  Google Scholar 

  70. Kuchroo VK, Greer JM, Kaul D, Ishioka G, Franco A, Sette A, et al.: A single TCR antagonist peptide inhibits experimental allergic encephalomyelitis mediated by a diverse T cell repertoire. J Immunol 1994;153:3326–3336.

    PubMed  CAS  Google Scholar 

  71. Racioppi L, Ronchese F, Matis LA, Germain RN: Peptide-major histocompatibility complex class II complexes with mixed agonist/ antagonist properties provide evidence for ligand-related differences in T cell receptor-dependent intracellular signaling. J Exp Med 1993;177:1047–1060.

    Article  PubMed  CAS  Google Scholar 

  72. Snoke K, Alexander J, Franco A, Smith L, Brawley JV, Concannon P, et al.: The inhibition of different T cell lines specific for the same antigen with TCR antagonist peptides. J Immunol 1993; 151: 6815–6821.

    PubMed  CAS  Google Scholar 

  73. Mannie MD, Rosser JM, White GA: Autologous rat myelin basic protein is a partial agonist that is converted into a full antagonist upon blockade of CD4. Evidence for the integration of efficacious and nonefficacious signals during T cell antigen recognition. J Immunol 1995;154:2642–2654.

    PubMed  CAS  Google Scholar 

  74. Rogers PR, Grey HM, Croft M: Modulation of naive CD4 T cell activation with altered peptide ligands: the nature of the peptide and presentation in the context of costimulation are critical for a sustained response. J Immunol 1998; 160:3698–3704.

    PubMed  CAS  Google Scholar 

  75. Daniel C, Grakoui A, Allen PM: Inhibition of an in vitro CD4+ T cell allo-response using altered peptide ligands. J Immunol 1998; 160:3244–3250.

    PubMed  CAS  Google Scholar 

  76. Sloan-Lancaster J, Allen PM: Altered peptide ligand-induced partial T cell activation: molecular mechanisms and role in T cell biology. Annu Rev Immunol 1996; 14:1–27.

    Article  PubMed  CAS  Google Scholar 

  77. Hollsberg P, Weber WE, Dangond F, Batra V, Sette A, Hafler DA: Differential activation of proliferation and cytotoxicity in human T-cell lymphotropic virus type I Tax-specific CD8 T cells by an altered peptide ligand. Proc Natl Acad Sci USA 1995;92:4036–4040.

    Article  PubMed  CAS  Google Scholar 

  78. Madrenas J, Germain RN: Variant TCR ligands: new insights into the molecular basis of antigen-dependent signal transduction and T-cell activation. Semin Immunol 1996; 8:83–101.

    Article  PubMed  CAS  Google Scholar 

  79. Madrenas J, Chau LA, Smith J, Bluestone JA, Germain RN: The efficiency of CD4 recruitment to ligand-engaged TCR controls the agonist/partial agonist properties of peptide-MHC molecule ligands. J Exp Med 1997;185:219–229.

    Article  PubMed  CAS  Google Scholar 

  80. Reis e Sousa C, Levine EH, Germain RN: Partial signaling by CD8+ T cells in response to antagonist ligands. J Exp Med 1996; 184:149–157.

    Article  PubMed  CAS  Google Scholar 

  81. Madrenas J, Wange RL, Wang JL, Isakov N, Samelson LE, Germain RN: Zeta phosphorylation without ZAP-70 activation induced by TCR antagonists or partial agonists [see comments]. Science 1995;267:515–518.

    Article  PubMed  CAS  Google Scholar 

  82. Racioppi L, Germain RN: Modified T-cell receptor ligands: moving beyond a strict occupancy model for T-cell activation by antigen. Chem Immunol 1995;60: 79–99.

    Article  PubMed  CAS  Google Scholar 

  83. Evavold BD, Allen PM: Separation of IL-4 production from Th cell proliferation by an altered T cell receptor ligand. Science 1991; 252:1308–1310.

    Article  PubMed  CAS  Google Scholar 

  84. Evavold BD, Sloan-Lancaster J, Hsu BL, Allen PM: Separation of T helper 1 clone cytolysis from proliferation and lymphokine production using analog peptides. J Immunol 1993; 150:3131–3140.

    PubMed  CAS  Google Scholar 

  85. Germain RN: T-cell signaling: the importance of receptor clustering [Review] [29 refs]. Curr Biol 1997;7:R640–644.

    Article  PubMed  CAS  Google Scholar 

  86. Dustin ML, Bromley SK, Kan Z, Peterson DA, Unanue ER: Antigen receptor engagement delivers a stop signal to migrating T lymphocytes. Proc Natl Acad Sci USA 1997;94:3909–3913.

    Article  PubMed  CAS  Google Scholar 

  87. Washington EA, Kimpton WG, Holder JE, Cahill RN: Role of the thymus in the generation of skinhoming alpha beta and gamma delta virgin T cells. Eur J Immunol 1995;25:723–727.

    Article  PubMed  CAS  Google Scholar 

  88. Kurts C, Heath WR, Carbone FR, Allison J, Miller JF, Kosaka H: Constitutive class I-restricted exogenous presentation of self antigens in vivo. J Exp Med 1996; 184:923–930.

    Article  PubMed  CAS  Google Scholar 

  89. Forster I, Lieberam I: Peripheral tolerance of CD4 T cells following local activation in adolescent mice. Eur J Immunol 1996;26: 3194–3202.

    Article  PubMed  CAS  Google Scholar 

  90. Kimpton WG, Washington EA, Cahill RN: Virgin alpha beta and gamma delta T cells recirculate extensively through peripheral tissues and skin during normal development of the fetal immune system. Intern Immunol 1995;7: 1567–1577.

    Article  CAS  Google Scholar 

  91. Kroemer G, Cuende E, Martinez C: Compartmentalization of the peripheral immune system. Adv Immunol 1993;53:157–216.

    PubMed  CAS  Google Scholar 

  92. Mannie MD: The post-activation refractory phase: a mechanism to measure antigenic complexity and ensure self-tolerance among mature peripheral T lymphocytes. Med Hypotheses 1996;47:467–470.

    Article  PubMed  CAS  Google Scholar 

  93. Kaufman M, Andris F, Leo O: A model for antigen-induced T cell unresponsiveness based on autophosphorylative protein tyrosine kinase activity. Intern Immunol 1996;8:613–624.

    Article  CAS  Google Scholar 

  94. Willems F, Andris F, Xu D, Abramowicz D, Wissing M, Goldman M, et al.: The induction of human T cell unresponsiveness by soluble anti-CD3 mAb requires T cell activation. Intern Immunol 1995;7:1593–1598.

    Article  CAS  Google Scholar 

  95. Dubois PM, Andris F, Shapiro RA, Gilliland LK, Kaufman M, Urbain J, et al.: T cell long-term hyporesponsiveness follows antigen receptor engagement and results from defective signal transduction. Eur J Immunol 1994;24: 348–354.

    Article  PubMed  CAS  Google Scholar 

  96. Andris F, Van Mechelen M, De Mattia F, Baus E, Urbain J, Leo O: Induction of T cell unresponsiveness by anti-CD3 antibodies occurs independently of co-stimulatory functions. Eur J Immunol 1996;26:1187–1195.

    Article  PubMed  CAS  Google Scholar 

  97. Andris F, Van Mechelen M, Legrand N, Dubois PM, Kaufman M, Urbain J, et al.: Induction of long-term but reversible unresponsiveness after activation of murine T cell hybridomas. Intern Immunol 1991;3:609–616.

    Article  CAS  Google Scholar 

  98. Pantaleo G, Olive D, Poggi A, Pozzan T, Moretta L, Moretta A: Antibody-induced modulation of the CD3/T cell receptor complex causes T cell refractoriness by inhibiting the early metabolic steps involved in T cell activation. J Exp Med1987; 166:619–624.

    Article  PubMed  CAS  Google Scholar 

  99. Cai Z, Kishimoto H, Brunmark A, Jackson MR, Peterson PA, Sprent J: Requirements for peptideinduced T cell receptor downregulation on naive CD8+ T cells. J Exp Med 1997;185:641–651.

    Article  PubMed  CAS  Google Scholar 

  100. Mannie MD, White GA, Lake KR, Nardella JP, Marinakis CA, McConnell TJ: T-helper lymphocytes specific for myelin basic protein: low-density activation prolongs a postactivation refractory phase marked by decreased pathogenicity and enhanced sensitivity to anergy. Cell Immunol 1996;172:108–117.

    Article  PubMed  CAS  Google Scholar 

  101. Kramer S, Schimpl A, Hunig T: Immunopathology of interleukin (IL) 2-deficient mice: thymus dependence and suppression by thymus-dependent cells with an intact IL-2 gene. J Exp Med 1995; 182:1769–1776.

    Article  PubMed  CAS  Google Scholar 

  102. Simpson SJ, Mizoguchi E, Allen D, Bhan AK, Terhorst C: Evidence that CD4+, but not CD8+ T cells are responsible for murine interleukin-2-deficient colitis. Eur J Immunol 1995;25:2618–2625.

    Article  PubMed  CAS  Google Scholar 

  103. Heuer J, Kolsch E: Functional studies on the role of I-A molecules expressed by the antigen-specific T suppressor cell clone HF1. J Immunol 1985;134:4031–4034.

    PubMed  CAS  Google Scholar 

  104. Reske-Kunz AB, Reske K, Rude E: Cloned murine Ia+ BK-BI-2.6.C6 T cells function as accessory cells presenting protein antigens to long-term-cultured antigen-specific T cell lines. J Immunol 1986;136:2033–2040.

    PubMed  CAS  Google Scholar 

  105. Ben-Nun A, Strauss W, Leeman SA, Cohn LE, Murre C, Duby A, et al.: An la-positive mouse T-cell clone is functional in presenting antigen to other T cells. Immunogenetics 1985;22:123–130.

    Article  PubMed  CAS  Google Scholar 

  106. Graf L, Koch N, Schirrmacher V: Expression of Ia antigens in a murine T-lymphoma variant. Mol Immunol 1985;22:1371–1377.

    Article  PubMed  CAS  Google Scholar 

  107. Gautam SC, Matriano JA, Chikkala NF, Edinger MG, Tubbs RR: L3T4 (CD4+) cells that mediate contact sensitivity to trinitrochlorobenzene express I-A determinants. Cell Immunol 1991;135:27–41.

    Article  PubMed  CAS  Google Scholar 

  108. Reske K, Mohle U, Sun D, Wekerle H: Synthesis and cell surface display of class II determinants by long-term propagated rat T line cells. Eur J Immunol 1987;17: 909–914.

    Article  PubMed  CAS  Google Scholar 

  109. Kira J, Itoyama Y, Goto I: Generation of CD4+ blastoid T cells showing marked upregulation of CD4, class I and II MHC, and IL2 receptor molecules is required for the expression of potent encephalitogenicity. Cell Immunol 1989; 123:264–275.

    Article  PubMed  CAS  Google Scholar 

  110. Bevan DJ, Chisholm PM:Co-expression of CD4 and CD8 molecules and de novo expression of MHC class II antigens on activated rat T cells. Immunol 1986;59:621–625.

    CAS  Google Scholar 

  111. Reizis B, Schramm C, Cohen IR, Mor F: Expression of major histocompatibility complex class II molecules in rat T cells. Eur J Immunol 1994;24:2796–2802.

    Article  PubMed  CAS  Google Scholar 

  112. Yu DT, McCune JM, Fu SM, Winchester RJ, Kunkel HG: Two types of la-positive T cells. Synthesis and exchange of la antigens. J Exp Med 1980;152:89s-98s.

    PubMed  CAS  Google Scholar 

  113. Yu DT, Winchester RJ, Fu SM, Gibofsky A, Ko HS, Kunkel HG: Peripheral blood la-positive T cells. Increases in certain diseases and after immunization. J Exp Med 1980;151:91–100.

    Article  PubMed  CAS  Google Scholar 

  114. Evans RL, Faldetta TJ, Humphreys RE, Pratt DM, Yunis EJ, Schlossman SF: Peripheral human T cells sensitized in mixed leukocyte culture synthesize and express la-like antigens. J Exp Med 1978; 148: 1440–1445.

    Article  PubMed  CAS  Google Scholar 

  115. Reinherz EL, Kung PC, Pesando JM, Ritz J, Goldstein G, Schlossman SF: Ia determinants on human T-cell subsets defined by monoclonal antibody. Activation stimuli required for expression. J Exp Med 1979;150:1472–1482.

    Article  PubMed  CAS  Google Scholar 

  116. Ko HS, Fu SM, Winchester RJ, Yu DT, Kunkel HG: Ia determinants on stimulated human T lymphocytes. Occurrence on mitogen- and antigen-activated T cells. J Exp Med 1979;150:246–255.

    Article  PubMed  CAS  Google Scholar 

  117. Lamb JR, Skidmore BJ, Green N, Chiller JM, Feldman M: Induction of tolerance in influenza virusimmune T lymphocyte clones with synthetic peptides of influenza hemagglutinin. J Exp Med 1983;157:1434.

    Article  PubMed  CAS  Google Scholar 

  118. Lamb JR, Feldmann M: Essential requirement for major histocompatibility complex recognition in T cell tolerance induction. Nature 1984;308:72.

    Article  PubMed  CAS  Google Scholar 

  119. LaSalle JM, Tolentino PJ, Freeman GJ, Nadler LM, Hafler DA: Early signaling defects in human T cells anergized by T cell presentation of autoantigen. J Exp Med 1992;176:177–186.

    Article  Google Scholar 

  120. LaSalle JM, Toneguzzo F, Saadeh M, Golan DE, Taber R, Hafler D: T cell presentation of antigen requires cell-to-cell contact for proliferation and anergy induction: differential MHC requirements for superantigen and autoantigen. J Immunol 1993;151:649–657.

    Google Scholar 

  121. LaSalle JM, Hafler DA: T cell anergy. FASEB J 1994;8:601–608.

    Google Scholar 

  122. Celis E, Saibara T: Binding of T cell receptor to major histocompatibility complex class II peptide complexes at the single-cell level results in the induction of antigen unresponsiveness (anergy). Eur J Immunol 1992;22:3127–3134.

    Article  PubMed  CAS  Google Scholar 

  123. Satyaraj E, Rath S, Bal V: Induction of tolerance in freshly isolated alloreactive CD4+ T cells by activated T cell stimulators. Eur J Immunol 1994;24:2457–2461.

    Article  PubMed  CAS  Google Scholar 

  124. Bettens F, Frei E, Frutig K, Mauri D, Pichler WJ, Wyss-Coray T: Noncy totoxic human CD4+ T-cell clones presenting and simultaneously responding to an antigen die of apoptosis. Cell Immunol 1995;161:72–78.

    Article  PubMed  CAS  Google Scholar 

  125. Pichler WJ, Wyss-Coray T: T cells as antigen-presenting cells. Immunol Today 1994;15:312–315.

    Article  PubMed  CAS  Google Scholar 

  126. Mannie MD, Rendali SK, Arnold PY, Nardella JP, White GA: Anergy-associated T cell antigen presentation. A mechanism of infectious tolerance in experimental autoimmune encephalomyelitis. J Immunol 1996; 157: 1062–1070.

    PubMed  CAS  Google Scholar 

  127. Mauri D, Wyss-Coray T, Gallati H, Pichler WJ: Antigen-presenting T cells induce the development of cytotoxic CD4+ T cells. I. Involvement of the CD80-CD28 adhesion molecules. J Immunol 1995;155:118–127.

    PubMed  CAS  Google Scholar 

  128. Lorber MI, Loken MR, Stall AM, Fitch FW: I-A antigens on cloned alloreactive murine T lymphocytes are acquired passively. J Immunol 1982;128:2798–2803.

    PubMed  CAS  Google Scholar 

  129. Arnold PY, Davidian DK, Mannie MD: Antigen presentation by T cells: T cell receptor ligation promotes antigen acquisition from professional antigen-presenting cells. Eur J Immunol 1997;27: 3198–3205.

    Article  PubMed  CAS  Google Scholar 

  130. Raposo G, Nijman HW, Stoorvogel W, Leijendekker R, Harding CV, Melief CJM, et al.:B lymphocytes secrete antigen-presenting vesicles. J Exp Med 1996;183: 1161–1172.

    Article  PubMed  CAS  Google Scholar 

  131. Mannie MD, White GA, Nardella JP, Davidian DK, Arnold PY: Partial agonism elicits an enduring phase of T cell-mediated antigen presentation. Cell Immunol 1998; 186:83–93.

    Article  PubMed  CAS  Google Scholar 

  132. Mannie MD, Nardella JP, White GA, Arnold PY, Davidian DK: Class II MHC/peptide complexes on T cell antigen-presenting cells: agonistic antigen recognition inhibits subsequent antigen presentation. Cell Immunol 1998; 186:111–120.

    Article  PubMed  CAS  Google Scholar 

  133. Mannie MD: Do holes in the T-cell repertoire have a center-surround regulatory structure? A rationale for the bifurcation of the Thl and Th2 pathways of differentiation. Med Hypotheses 1997;48:261–265.

    Article  PubMed  CAS  Google Scholar 

  134. Parish CR, O’Neill ER: Dependence of the adaptive immune response on innate immunity: some questions answered but new paradoxes emerge. Immunology & Cell Biology 1997;75:523–527.

    Article  CAS  Google Scholar 

  135. Cook SD, Rohowsky-Kochan C, Bansil S, Dowling PC: Evidence for multiple sclerosis as an infectious disease. Acta Neurol Scand Suppl 1995;161:34–42.

    Article  PubMed  CAS  Google Scholar 

  136. Kurtzke JF: Epidemiologic evidence for multiple sclerosis as an infection [published erratum appears in Clin Microbiol Rev 1994 Jan;7(1):141]. Clin Microbiol Rev 1993;6:382–427.

    PubMed  CAS  Google Scholar 

  137. Gautam AM, Liblau R, Chelvanayagam G, Steinman L, Boston T: A viral peptide with limited homology to a self peptide can induce clinical signs of experimental autoimmune encephalomyelitis [in process citation]. J Immunol 1998;161:60–64.

    PubMed  CAS  Google Scholar 

  138. Ewing C, Bernard CC: Insights into the aetiology and pathogenesis of multiple sclerosis. Immunol Cell Biol 1998;76:47–54.

    Article  PubMed  CAS  Google Scholar 

  139. Bhardwaj V, Kumar V, Geysen HM, Sercarz EE: Degenerate recognition of a dissimilar antigenic peptide by myelin basic proteinreactive T cells. Implications for thymic education and autoimmunity. J Immunol 1993;151:5000–5010.

    PubMed  CAS  Google Scholar 

  140. Weissert R, Svenningsson A, Lobell A, de Graaf KL Andersson R, Olsson T: Molecular and genetic requirements for preferential recruitment of TCRBV8S2+ T cells in Lewis rat experimental autoimmune encephalomyelitis. J Immunol 1998; 160:681–690.

    PubMed  CAS  Google Scholar 

  141. Sun D, Le J, Coleclough C: Diverse T cell receptor beta chain usage by rat encephalitogenic T cells reactive to residues 68-88 of myelin basic protein. EurJ Immunol 1993; 23:494–498.

    Article  CAS  Google Scholar 

  142. Sun D, Shah R, Coleclough C: Repertoire of rat MBP-reactive T cells: DNA sequencing analysis further demonstrates the clonal heterogeneity of rat T cells reactive against encephalitogenic epitopes. Cell Immunol 1994; 156: 389–401.

    Article  PubMed  CAS  Google Scholar 

  143. Sun D, Hu XZ, Le J, Swanborg RH: Characterization of brain-isolated rat encephalitogenic T cell lines. Eur J Immunol 1994;24: 1359–1364.

    Article  PubMed  CAS  Google Scholar 

  144. Sun D, Coleclough C, Hu XZ: Heterogeneity of rat encephalitogenic T cells elicited by variants of the myelin basic protein (68-86) peptide. Eur J Immunol 1995;25: 1687–1692.

    Article  PubMed  CAS  Google Scholar 

  145. Gold R, Giegerich G, Hartung HP, Toyka KV: T-cell receptor (TCR) usage in Lewis rat experimental autoimmune encephalomyelitis: TCR beta-chain-variable-region V beta 8.2-positive T cells are not essential for induction and course of disease. Proc Natl Acad Sci USA 1995;92:5850–5854.

    Article  PubMed  CAS  Google Scholar 

  146. Johnson BD, Nardella JP, McConnell TJ, Mannie MD: Acquired resistance to experimental autoimmune encephalomyelitis is independent of V beta usage. Cell Immunol 1997;179:55–65.

    Article  PubMed  CAS  Google Scholar 

  147. Buenafe AC, Vainiene M, Celnik B, Vandenbark AA, Offner H: Analysis of V beta 8-CDR3 sequences derived from central nervous system of Lewis rats with experimental autoimmune encephalomyelitis. J Immunol 1994;153: 386–394.

    PubMed  CAS  Google Scholar 

  148. Chluba J, Steeg C, Becker A, Wekerle H, Epplen JT: T cell receptor beta chain usage in myelin basic protein-specific rat T lymphocytes. Eur J Immunol 1989;19: 279–284.

    Article  PubMed  CAS  Google Scholar 

  149. Tsuchida M, Matsumoto Y, Hirahara H, Hanawa H, Tomiyama K, Abo T: Preferential distribution of V beta 8.2-positive T cells in the central nervous system of rats with myelin basic protein-induced autoimmune encephalomyelitis. Eur J Immunol 1993;23:2399–2406.

    Article  PubMed  CAS  Google Scholar 

  150. Offner H, Buenafe AC, Vainiene M, Celnik B, Weinberg AD, Gold DP, et al.: Where, when, and how to detect biased expression of disease-relevant V beta genes in rats with experimental autoimmune encephalomyelitis. J Immunol 1993;151:506–517.

    PubMed  CAS  Google Scholar 

  151. Mombaerts P, Mizoguchi E, Grusby MJ, Glimcher LH, Bhan AK, Tonegawa S: Spontaneous development of inflammatory bowel disease in T cell receptor mutant mice [see comments]. Cell 1993;75:274–282.

    Article  PubMed  CAS  Google Scholar 

  152. Horak I: Immunodeficiency in IL2-knockout mice. Clin Immunol Immunopathol 1995;76:S172–173.

    Article  PubMed  CAS  Google Scholar 

  153. Elson CO, Sartor RB, Tennyson GS, Riddell RH: Experimental models of inflammatory bowel disease. Gastroenterology 1995; 109:1344–1367.

    Article  PubMed  CAS  Google Scholar 

  154. Tsubata R, Tsubata T, Hiai H, Shinkura R, Matsumura R, Sumida T, et al.: Autoimmune disease of exocrine organs in immunodeficient alymphoplasia mice: a spontaneous model for Sjogren“s syndrome. Eur J Immunol 1996; 26:2742–2748.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark D. Mannie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mannie, M.D. Immunological self/nonself discrimination. Immunol Res 19, 65–87 (1999). https://doi.org/10.1007/BF02786477

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02786477

Key words

Navigation