Skip to main content
Log in

The development of CD4+ T effector cells during the type 2 immune response

  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

Multiple pathways may be involved in the development of interleukin 4 (IL-4) producing T helper (Th) cells and the associated type 2 immune response. Increasing evidence suggests that the strength of signals delivered to the T cell may favor the development of the type 2 response. In contrast, antigen-presenting cell-(APC) derived stimuli produced following pattern recognition receptor binding during the innate response promotes the development of interferon-γ (IFN-γ) producing cells and the associated type 1 immune response. In many cases, the balance between increased signaling strength and the innate response may determine whether the type 2 response develops. T cell receptor (TCR), CD4, and costimulatory molecule interactions may all contribute to signal strength, but the type 2 immune response may be particularly dependent on the availability of coreceptor and costimulatory molecule interactions. B7 ligand interactions are required for the development of the type 2 immune response and interaction of CD28 with either B7-1 or B7-2 can provide sufficient signals for its initiation. In B7-2-deficient mice, the initial type 2 immune response is intact, but the response is not sustained, suggesting that B7-2 is important at later stages of the type 2 immune response. The roles of CD28 and CTLA-4 during the type 2 response remain unclear. The type 2 response to infectious pathogens is pronounced in CD28-/-mice, suggesting that other costimulatory molecule interactions can substitute for CD28 for the development of IL-4 producing T cells and the associated type 2 immune response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Medzhitov R, Janeway CAJ: An ancient system of host defense. Curr Opinion Immunol 1998;10:12.

    Article  CAS  Google Scholar 

  2. Medzhitov R, Janeway CAJ: Innate immunity: the virtues of a nonclonal system of recognition. Cell 1997;91:295.

    Article  PubMed  CAS  Google Scholar 

  3. Grieder FB, Davis BK, Zhou XD, Chen SJ, Finkelman FD, Gause WC: Kinetics of cytokine expression and regulation of host protection following infection with molecularly cloned Venezuelan equine encephalitis virus. Virology 1997;233:302.

    Article  PubMed  CAS  Google Scholar 

  4. Svetic A, Jian YC, Lu P, Finkelman FD, Gause WC: Brucella abortus induces a novel cytokine gene expression characterized by elevated IL-10 and IFN-gamma in CD4+ T cells. Int Immunol 1993;5:877.

    Article  PubMed  CAS  Google Scholar 

  5. Svetic A, Madden KB, Zhou XD, Lu P, Katona IM, Finkelman FD, et al.: A primary intestinal helminthic infection rapidly induces a gut-associated elevation of Th2associated cytokines and IL-3. J Immunol 1993;150:3434.

    PubMed  CAS  Google Scholar 

  6. Finkelman FD, Holmes J, Katona IM, Urban JF Jr, Beckmann MP, Park LS, et al.: Lymphokine control of in vivo immunoglobulin isotype selection. Ann Rev Immunol 1990;8:303.

    Article  CAS  Google Scholar 

  7. Deehan MR, Harnett MM, Harnett W: A filarial nematode secreted product differentially modulates expression and activation of protein kinase C isoforms in B lymphocytes. J Immunol 1997;159: 6105.

    PubMed  CAS  Google Scholar 

  8. Velupillai P, Harn DA: Oligosaccharide-specific induction of interleukin 10 production by B220+ cells from schistosome-infected mice: a mechanism for regulation of CD4+ T-cell subsets [see comments]. Proc Natl Acad Sci USA 1994;91:18.

    Article  PubMed  CAS  Google Scholar 

  9. Svetic’ A, Finkelman FD, Jian YC, Dieffenbach CW, Scott DE, McCarthy KF, et al.: Cytokine gene expression after in vivo primary immunization with goat antibody to mouse IgD antibody. J Immunol 1991;147:2391.

    CAS  Google Scholar 

  10. Toellner KM, Luther S A, Sze DM, Choy RK, Taylor DR, et al: T helper 1 (Thl) and Th2 characteristics start to develop during T cell priming and are associated with an immediate ability to induce immunoglobulin class switching. J Exp Med 1998;187:1193.

    Article  PubMed  CAS  Google Scholar 

  11. Yoshimoto T, Bendelac A, Watson C, Hu-Li J, Paul WE: Role of NK1.1+ T cells in a Th2 response and in immunoglobulin E production. Science 1995;270:1845.

    Article  PubMed  CAS  Google Scholar 

  12. Yoshimoto T, Paul WE: CD4pos NKl.lpos T cells promptly produce interleukin 4 in response to in vivo challenge with anti-CD3. J ExpMed 1994;179:1285.

    Article  CAS  Google Scholar 

  13. Brown DR, Fowell DJ, Borry DB, Wynn TA, Moskowitz NH, Cheever AW, et al.: beta2-microglobulin-dependent NK1.1+ T cells arenot essential for T helper cell 2 immune responses. J Exp Med 1996;184: 1295.

    Article  PubMed  CAS  Google Scholar 

  14. Porcelli SA, Segelke BW, Sugita M, Wilson IA, Brenner MB. The CD1 family of lipid antigen-presenting molecules [in process citation]. Immunol Today 1998; 19:362.

    Article  PubMed  CAS  Google Scholar 

  15. Healy JI, Goodnow CC: Positive versus negative signaling by lymphocyte antigen receptors. Annu Rev Immunol 1998;16:645–70:645.

    Article  PubMed  CAS  Google Scholar 

  16. Thompson CB: Distinct roles for the costimulatory lignads B7-1 and B7-2 in T helper cell differentiation. Cell 1995;81:979.

    Article  PubMed  CAS  Google Scholar 

  17. Lenschow DJ, Walunas TL, Bluestone JA: CD28/B7 system of T cell costimulation. Ann Rev Immunol 1996;14:233.

    Article  CAS  Google Scholar 

  18. Bird JJ, Brown DR, Mullen AC, Moskowitz NH, Mahowald MA, Sider JR, et al.: Helper T cell differentiation is controlled by the cell cycle [In Process Citation]. Immunity 1998;9:229.

    Article  PubMed  CAS  Google Scholar 

  19. Bancroft AJ, Else KJ, Grencis RK: Low-level infection with Trichuris muris significantly affects the polarization of the CD4 response. Eur J Immunol 1994;24:3113.

    Article  PubMed  CAS  Google Scholar 

  20. Bretscher PA, Wei G, Menon JN, Bielefeldt-Ohmann H: Establishment of stable, cellmediated immunity that makes “susceptible” mice resistant toLeishmania major. Science 1992;257:539.

    Article  PubMed  CAS  Google Scholar 

  21. Brown DR, Moskowitz NH, Killeen N, Reiner SL: A role for CD4 in peripheral T cell differentiation. J ExpMed 1997;186:101.

    Article  CAS  Google Scholar 

  22. Fowell DJ, Magram J, Turck CW, Killeen N, Locksley RM: Impaired Th2 subset development in the absence of CD4. Immunity 1997; 6:559.

    Article  PubMed  CAS  Google Scholar 

  23. Linsley PS, Wallace PM, Johnson J, Givson MG, Greene JL, Ledbetter JA, et al.: Immunosuppression in vivo by a soluble form of the CTLA-4 T cell activation molecule. Science 1992;257:792.

    Article  PubMed  CAS  Google Scholar 

  24. Corry DB, Reiner SL, Linsley PS, Locksley RM: Differential effects of blockade of CD28-B7 on the development of Thl or Th2 effector cells in experimental Leishmaniasis. J Immunol 1994; 153:4142.

    PubMed  CAS  Google Scholar 

  25. Greenwald R, Lu P, Zhou X-D, Nguyen H, Chen SJ, Perrin PJ, et al.: Effects of blocking B7-1 and B7-2 interactions during a type 2 in vivo immune response. J Immunol 1997;158:4088.

    PubMed  CAS  Google Scholar 

  26. Lu P, Zhou X, Chen S J, Moorman M, Morris SC, Finkelman FD, et al.: CTLA-4 ligands are required in an in vivo interleukin 4 response to a gastrointestinal nematode parasite. J Exp Med 1994;180:693.

    Article  PubMed  CAS  Google Scholar 

  27. Szabo SJ, Dighe AS, Gubler U, Murphy KM: Regulation of the interleukin (IL)-12R beta 2 subunit expression in developing T helper 1 (Th 1 ) and Th2 cells. J Exp Med 1997;185:817.

    Article  PubMed  CAS  Google Scholar 

  28. Guler ML, Gorham JD, Hsieh CS, Mackey AJ, Steen RG, Dietrich WF, et al.: Genetic susceptibility to Leishmania: IL-12 responsiveness in TH1 cell development [see comments]. Science 1996;271:984.

    Article  PubMed  CAS  Google Scholar 

  29. O’Garra A: Cytokines induce the development of functionally heterogeneous T helper cell subsets. Immunity 1998;8:275.

    Article  PubMed  CAS  Google Scholar 

  30. Manickasingham SP, Anderton SM, Burkhart C, Wraith DC: Qualitative and quantitative effects of CD28/B7-mediated costimulation on naive T cells in vitro [in process citation]. J Immunol 1998; 161:3827.

    PubMed  CAS  Google Scholar 

  31. Leitenberg D, Boutin Y, Constant S, Bottomly K: CD4 regulation of TCR signaling and T cell differentiation following stimulation with peptides of different affinities for the TCR. J Immunol 1998 ; 161:1194.

    PubMed  CAS  Google Scholar 

  32. Constant S, Pfeiffer C, Woodard A, Pasqualini T, Bottomly K: Extent of T cell receptor ligation can determine the functional differentiation of naive CD4+ T cells. J Exp Med1995;182:1591.

    Article  PubMed  CAS  Google Scholar 

  33. Tao X, Grant C, Constant S, Bottomly K: Induction of IL-4-producing CD4+ T cells by antigenic peptides altered for TCR binding. J Immunol 1997; 158:4237.

    PubMed  CAS  Google Scholar 

  34. Constant SL, Bottomly K: Induction of Thl and Th2 CD4+ T cell responses: the alternative approaches. Annu Rev Immunol 1997; 15:297–322:297.

    Article  PubMed  CAS  Google Scholar 

  35. Gause WC, Urban JF, Linsley P, Lu P: Role of B7 signaling in the differentiation of naive CD4+ T cells to effector interleukin-4 producing T helper cells. Immunol Res 1995;14:176.

    Article  PubMed  CAS  Google Scholar 

  36. Subramanian G, Kazura JW, Pearlman E, Jia X, Malhotra I, King CL: B7-2 requirement for helminthinduced granuloma formation and CD4 type 2 T helper cell cytokine expression. J Immunol 1997; 158: 5914.

    PubMed  CAS  Google Scholar 

  37. Brown JA, Titus RG, Nabavi N, Glimcher LH: Blockade of CD86 ameliorates Leishmania major infection by downregulating the Th2 response. J Infect Dis 1997; 174:1303.

    Google Scholar 

  38. Gause WC, Halvorson MJ, Lu P, Greenwald R, Linsley P, Urban JF, et al.: The function of costimulatory molecules and the development of IL-4-producing T cells. Immunol Today 1997;18:115.

    Article  PubMed  CAS  Google Scholar 

  39. Sayegh MH, Akalin E, Hancock WW, Russell ME, Carpenter CB, Linsley PS, et al.: CD28-B7 blockade after alloantigenic challenge in vivo inhibits Thl cytokines but spares Th2. J Exp Med 1995; 181:1869.

    Article  PubMed  CAS  Google Scholar 

  40. Schweitzer AN, Sharpe AH: Studies using antigen-presenting cells lacking expression of both B7-1 (CD80) and B7-2 (CD86) show distinct requirements for B7 molecules during priming versus restimulation of Th2 but not Thl cytokine production [in process citation]. JImmunol 1998;161:2762.

    CAS  Google Scholar 

  41. Hathcock KS, Laszlo G, Pucillo C, Linsley P, Hodes RJ: Comparative analysis of B7-1 and B7-2 costimulatory ligands: expression and function. J Exp Med 1994; 180 (2):631.

    Article  PubMed  CAS  Google Scholar 

  42. Inaba K, Witmer-Pack M, Inaba M, Hathcock KS, Sakuta H, Azuma M, et al.: The tissue distribution of the B7-2 costimulator in mice: abundant expression on dendritic cells in situ and during maturation in vitro. J Exp Med 1994; 180:1849.

    Article  PubMed  CAS  Google Scholar 

  43. Linsley PS, Greenwald JL, Brady W, Bajorath J, Ledbetter JA, Peach R: Human B7-l(CD80) and B7-2 (CD86) bind with similar avidities but distinct kinetics to CD28 and CTLA-4 receptors. Immunity 1994;1:793.

    Article  PubMed  CAS  Google Scholar 

  44. Van der Merwe P, Bodian DL, Daenke S, Linsley P, Davis SJ:CD80 (B7-1) binds both CD28 and CTLA4 with a low affinity and very fast kinetics. J Exp Med 1997;185:393.

    Article  PubMed  Google Scholar 

  45. Ellis JH, Burden MN, Vinogradov DV, Linge C, Crowe JS: Interactions of CD80 and CD86 with CD28 and CTLA4. J Immunol 1996.

  46. Perez VL, Van ParijsL. Biuckians A, Zheng XX, Strom TB, Abbas AK: Induction of peripheral T cell tolerance in vivo requires CTLA-4 engagement. Immunity 1997;6:411.

    Article  PubMed  CAS  Google Scholar 

  47. Fournier S, Rathmell JC, Goodnow CC, Allison JP: T cell-mediated elimination of B7.2 transgenic B cells. Immunity 1997;6:327.

    Article  PubMed  CAS  Google Scholar 

  48. June CH, Bluestone JA, Nadler LM, Thompson CB: The B7 and CD28 receptor families. Immunol Today 1993;15:321.

    Article  Google Scholar 

  49. Finkelman FD, Urban JF Jr, Beckmann MP, Schooley KA, Holmes JM, Katona IM: Regulation of murine in vivo IgG and IgE responses by a monoclonal anti-IL-4 receptor antibody. Int Immunol 1991;3:599.

    Article  PubMed  CAS  Google Scholar 

  50. Green JM, Noel PJ, Sperling AI, Walunas TL, Gray GS, Bluestone JA, et al.: Absence of B7-dependent response in CD28-deficient mice. Immunity 1994;l:501.

    Article  Google Scholar 

  51. Gause WC, Greenwald R, Halvorson MJ, Lu P, Zhou X-D, Chen S-J, et al.: CD28-dependence of T cell differentiation to IL-4 production varies with the particular type 2 immune response. J Immunol 1997;158:4082.

    PubMed  CAS  Google Scholar 

  52. Brown DR, Green JM, Moskowitz NH, Davis M, Thompson CB, Reiner SL: Limited role of CD28-mediated signals in T helper subset differentiation. J Exp Med 1996;184:803.

    Article  PubMed  CAS  Google Scholar 

  53. Waterhouse P, Penninger JM, Timms E, Wakeham A, Shahinian A, Lee KP, et al.: Lymphoproliferative disorders with early lethality in mice deficient in CTLA-4. Science 1995;270:932.

    Article  Google Scholar 

  54. Tivol EA, Bordello F, Schweitzer AN, Lynch WP, Bluestone JA, Sharpe AH: Loss of CTLA-4 leads to massive lymphoproliferations and fetal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4. Immunity 1995;3:541.

    Article  PubMed  CAS  Google Scholar 

  55. Krummel MF, Allison JP: CD28 and CTLA-4 have opposing effects on the response of T cells to stimulation [see comments]. J Exp Med 1995;182:459.

    Article  PubMed  CAS  Google Scholar 

  56. Alegre ML, Shiels H, Thompson CB, Gajewski TF: Expression and function of CTLA-4 in Thl and Th2 cells [in process citation], J Immunol 1998;161:3347.

    PubMed  CAS  Google Scholar 

  57. Wu Y, Guo Y, Huang A, Zheng P, Liu Y: CTLA-4-B7 interaction is sufficient to costimulate T cell clonal expansion. J Exp Med 1997; 185:1327.

    Article  PubMed  CAS  Google Scholar 

  58. Wu Y, Zhou Q, Zheng P, Liu Y: CD28-independent induction of T helper cells and immunoglobulin class switches requires costimulation by the heat-stable antigen. J Exp Med 1998;187:1151.

    Article  PubMed  CAS  Google Scholar 

  59. Lu P, Zhou X-D, Chen S-J, Moorman M, Schoneveld A, Morris S, Finkelman FD, et al.: Requirement of CTLA-4 counter receptors for IL-4 but not IL-10 elevations during a systemic in vivo immune response. J Immunol 1995;154:1078.

    PubMed  CAS  Google Scholar 

  60. Liu Y, Wenger RH, Zhao M, Nielsen PJ: Distinct costimulatory molecules are required for the induction of effector and memory cytotoxic T lymphocytes. J Exp Med 1997; 185:251.

    Article  PubMed  CAS  Google Scholar 

  61. Steinman RM: Some misconceptions about understanding autoimmunity through experiments with knockouts. J Exp Med 1997; 185:2039.

    Article  PubMed  CAS  Google Scholar 

  62. Grewal IS, Flavell RA:CD40and CD 154 in cell-mediated immunity. AnnuRev Immunol 1998;16:111–35:111.

    Article  CAS  Google Scholar 

  63. Lu P, Urban JF, Zhou X-D, Chen S-J, Morris SC, Finkelman FD, et al.: CD40-mediated costimulation contributes to lymphocyte proliferation, antibody production, eosinophilia, and mastocytosis during an in vivo type 2 response, but is not required for T cell IL-4 production. J Immunol 1996;156:3327.

    PubMed  CAS  Google Scholar 

  64. Roos A, Schilder-Tol EJ, Weening JJ, Aten J: Strong expression of CD134 (OX40), a member of the TNF receptor family, in a T helper 2-type cytokine environment [in process citation]. J Leukoc Biol 1998;64:503.

    PubMed  CAS  Google Scholar 

  65. Flynn S, Toellner KM, Raykundalia C, Goodall M, Lane P: CD4 T cell cytokine differentiation: the B cell activation molecule, OX40 ligand, instructs CD4 T cells to express interleukin 4 and upregulates expression of the chemokine receptor, Blr-1. J Exp Med 1998; 188:297.

    Article  PubMed  CAS  Google Scholar 

  66. Greenwald RJ, Urban JF, Ekkens MJ, Chen S, Nguyen D, Fang H, Finkelman FD, Sharpe AH, Gause WC: B7-2 is required for the progression but not the initiation of the type 2 immune response to a gastrointestinal nematode parasite. J Immunol 1999;162:4133–4139.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William C. Gause.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gause, W.C., Ekkens, M., Nguyen, D. et al. The development of CD4+ T effector cells during the type 2 immune response. Immunol Res 20, 55–65 (1999). https://doi.org/10.1007/BF02786507

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02786507

Key Words

Navigation