Skip to main content
Log in

Existence proof for orthogonal dynamics and the Mori-Zwanzig formalism

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

We study the existence of solutions to the orthogonal dynamics equation, which arises in the Mori-Zwanzig formalism in irreversible statistical mechanics. This equation generates the random noise associated with a reduction in the number of variables. IfL is the Liouvillian, or Lie derivative associated with a Hamiltonian system, andP an orthogonal projection onto a closed subspace ofL 2, then the orthogonal dynamics is generated by the operator (IP)L. We prove the existence of classical solutions for the case whereP has finite-dimensional range. In the general case, we prove the existence of weak solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Chorin, O. Hald and R. Kupferman,Optimal prediction and the Mori-Zwanzig representation of irreversible processes, Proceedings of the National Academy of Sciences of the United States of America97 (2000), 2968–2973.

    Article  MATH  MathSciNet  Google Scholar 

  2. A. Chorin, O. Hald and R. Kupferman,Optimal prediction with memory, Physica D166 (2002), 239–257.

    Article  MATH  MathSciNet  Google Scholar 

  3. K. Chung,A Course in Probability Theory, Academic Press, New York, 1974.

    MATH  Google Scholar 

  4. D. Evans and G. Morriss,Statistical Mechanics of Nonequlibrium Liquids, Academic Press, London, 1990.

    Google Scholar 

  5. L. Evans,Partial Differential Equations, American Mathematical Society, Providence, RI, 1998.

    MATH  Google Scholar 

  6. K. Friedrichs,Symmetric hyperbolic linear differential equations, Communications on Pure and Applied Mathematics7 (1954), 345–392.

    Article  MATH  MathSciNet  Google Scholar 

  7. G. Gripenberg, S.-O. Londen and O. Staffans,Volterra Integral and Functional Equations, Cambridge University Press, Cambridge, 1990.

    MATH  Google Scholar 

  8. F. John,Partial Differential Equations, Fourth edn., Springer-Verlag, New York, 1982.

    Google Scholar 

  9. W. Just, K. Gelfert, N. Baba, A. Riegert and H. Kantz,Elimination of fast chaotic degrees of freedom: on the accuracy of the Born approximation, Journal of Statistical Physics112 (2003), 277–292.

    Article  MATH  MathSciNet  Google Scholar 

  10. W. Just, H. Kantz, C. Rödenbeck and M. Helm,Stochastic modelling: replacing fast degrees of freedom by noise, Journal of Physics A34 (2001), 3199–3213.

    Article  MATH  Google Scholar 

  11. H. Mori,Transport, collective motion, and Brownian motion, Progress in Theoretical Physics33 (1965), 423–450.

    Article  MATH  Google Scholar 

  12. H. Mori, H. Fujisaka and H. Shigematsu,A new expansion of the master equation, Progress in Theoretical Physics51 (1974), 109–122.

    Article  Google Scholar 

  13. A. Pazy,Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983.

    MATH  Google Scholar 

  14. M. Reed and B. Simon,Methods of Modern Mathematical Physics, II. Fourier Analysis, Self-Adjointness, Academic Press, San Diego, 1975.

    MATH  Google Scholar 

  15. M. Renardy and R. Rogers,An Introduction to Partial Differential Equations, Springer-Verlag, New York, 1993.

    MATH  Google Scholar 

  16. W. Rudin,Real and Complex Analysis, Third edn., McGraw-Hill, Boston, 1987.

    MATH  Google Scholar 

  17. M. Spivak,A Comprehensive Introduction to Differential Geometry, Second edn., Publish or Perish, Berkeley, CA, 1990.

    Google Scholar 

  18. M. Stone,On one parameter unitary groups in Hilbert space, Annals of Mathematics33 (1932), 643–648.

    Article  MathSciNet  Google Scholar 

  19. K. Yosida,Functional Analysis, Sixth edn., Springer-Verlag, New York, 1998.

    Google Scholar 

  20. R. Zwanzig,Problems in nonlinear transport theory, inSystems Far from Equilibrium (L. Garrido, ed.), Springer, New York, 1980, pp. 198–225.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dror Givon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Givon, D., Kupferman, R. & Hald, O.H. Existence proof for orthogonal dynamics and the Mori-Zwanzig formalism. Isr. J. Math. 145, 221–241 (2005). https://doi.org/10.1007/BF02786691

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02786691

Keywords

Navigation