Skip to main content
Log in

Methanogenesis mediated by methylotrophic mixed culture

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Enrichment of methanogenic cultures on methanol from the microbial population in the anaerobic digesters operated on agricultural wastes revealed a high rate of biomethanation efficiency. Routine maintenance of this enrichment in a minimal basal medium at room temperature resulted in maximal growth in 40–50 d, and indicated pigment production toward the end of the growth phase. The cultures grown in three different media, with different substrates under light and dark conditions, were analyzed for protein, pigment, and gaseous products, and morphological studies were carried out by light, phase-contrast, fluorescence, and electron microscopy. In different media with methanol as substrate, growth and pigment production were maximal for the light-grown cells, decreasing in the order: phototrophic (PS(m)) > mineral > basal medium. Methanation and phototrophic growth were inversely correlated under lightgrown conditions. In contrast, growth in the dark was predominently methanogenic in the decreasing order: mineral > basal > PS (m). Among other growth conditions tested, utilization of phototrophic substrates under light and dark conditions indicated the following:

  1. 1.

    Basal and mineral media were supportive of methanogenic growth under both light and dark conditions, although methane yields under light-grown conditions were low;

  2. 2.

    Among the different substrates tested, methanol-grown cells gave the highest methane yield in the dark and;

  3. 3.

    Phototrophic growth in PS medium with succinate, malate, and pyruvate was better than that with methanol.

Absorption spectra of light-grown cells indicated the presence of bacteriochlorophyll a (Bchl a), as a doublet in the 800–0 nm region, which was absent in the dark-grown cells. Spectra of extracted pigments confirmed the presence of Bchl a with a 770-nm peak and carotenoid absorption bands in the 400–500 nm region indicative of the presence of a pigment of the spirilloxanthin type. Collective evidence for the predominant growth of a phototrophic organism under lightgrown conditions and microscopic examination under all conditions indicated the possible presence in the mixed culture of purple nonsulfur bacteria of theRhodopseudomonas type. In addition, the enrichment culture was found to contain other morphological forms, such as short and long rods, both individually and in clusters and coccoid cells.

The presence of such different forms of microbial population in a methylotrophic enrichment along with phototrophic bacteria is interesting and is of ecological significance. Considering the uphill task of methanol oxidation under anaerobic conditions, the studies on the present enrichment signify metabolic partnerships in the methylotrophic biochemical mechanisms operative toward energy recovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Slater, J. H. (1981), inMixed Culture Fermentation, Bushell, M. E. and Slater, J. H., eds., Academic Press, New York, p. 1.

    Google Scholar 

  2. Wilkinson, T. G., Topiwala, H. H., and Hamer, G. (1974),Biotechnol. Bioeng. 16, 41.

    Article  CAS  Google Scholar 

  3. Jones, R. D. and Hood, M. A. (1980),Microbial Ecology 6, 271.

    Article  Google Scholar 

  4. Senior, E., Bull, A. T., and Slater, J. H. (1976),Nature 263, 476.

    Article  CAS  Google Scholar 

  5. Kilpi, S. (1980),Microbial Ecology 6, 261.

    Article  CAS  Google Scholar 

  6. Daughton, C. G. and Hsieh, D. P. (1977),Appl. Environ. Microbiol. 34, 175.

    CAS  Google Scholar 

  7. Gunner, H. B. and Zuckerman, B. M. (1968),Nature 217, 1183.

    Article  CAS  Google Scholar 

  8. Hobson, P. N. (1982), inAdv. Agri. Microbiol. Subha Rao, N.S., ed., Butterworth, London, p. 523.

    Google Scholar 

  9. Lettinga G., Van Velson, A. F. M., Hobma, S. W., De Zeeuw, W., and Klapwijk, A. (1980),Biotechnol. Bioeng. 22, 699.

    Article  CAS  Google Scholar 

  10. Hobson, P. N. Bousfield, S., and Summers, R. (1974),Crit. Rev. Environ. Control 4, 131.

    CAS  Google Scholar 

  11. Schink, B. (1989), inBiology of Anaerobic Microorganism, Zehnder, A. J. B., ed., John Wiley, New York, p. 771.

    Google Scholar 

  12. Wolin, M. J. and Miller, T. L. (1982),ASM News 48, 561.

    Google Scholar 

  13. Lalitha, K., Swaminathan, K. R., and Padma Bai, R.Appl. Biochem. Biotechnol. 47, 73.

  14. Krishnan, S. and Lalitha, K. (1990),Appl. Biochem. Biotechnol. 26, 73.

    CAS  Google Scholar 

  15. Khan, A. W., Trottier, T. M., Patel, G. B., and Martin, S. M. (1979),J. Gen. Microbiol. 112, 365.

    CAS  Google Scholar 

  16. Weimer, A. M. and Zeikus, J. G. (1977),Appl. Environ. Microbiol. 33, 289.

    CAS  Google Scholar 

  17. Breure, A. M., Mooijman, K. A., and Van Andel, J. G. (1986),Appl. Microbiol. Biotechnol. 24, 426.

    Article  CAS  Google Scholar 

  18. Odom, J. M. and Wall, J. D. (1983),Appl. Environ. Microbiol. 45, 1300.

    CAS  Google Scholar 

  19. Koesnander, Nishio, N., Kuroda, K., and Nagai, S. (1990),J. Ferment. Bioeng. 70, 398.

    Article  Google Scholar 

  20. Swaminathan, K. R., Padma Bai, R., and Lalitha, K. (1993),in Adv. Pl. Biotech. Biochem, Lodha, N. L., Mehta, S. L., Ramgopal, S., and Srivastava, G. P., eds., Indian Soc. Agril. Biochemists, Kanpur, India, p. 127.

    Google Scholar 

  21. Hungate, R. E. (1969), inMethods in Microbiology, Harris, J. R. E. and Ribbons, D. W. eds., 3B, Academic, New York, p. 117.

    Google Scholar 

  22. Bryant, M. P., McBride, B. C, and Wolfe, R. S. (1968),J. Bacteriol. 95, 1118.

    CAS  Google Scholar 

  23. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. (1951),J. Biol. Chem. 193, 265.

    CAS  Google Scholar 

  24. Peck, M. W. (1989),Appl. Environ. Microbiol. 55, 940.

    CAS  Google Scholar 

  25. Haskins, E. F. and Kihara, T. (1967),Can. J. Microbiol. 13, 1283.

    CAS  Google Scholar 

  26. Albrecht, R. M., Rasmussen, D. H., Keller, C. S., and Hinsdill, R. D. (1976),J. Microscopy 108, 21.

    CAS  Google Scholar 

  27. Trüper, H. G., and Pfennig, N. (1981), inThe Prokaryotes, A Handbook on Habitats, Isolation and Identification of Bacteria. Starr, M. P., Stolp, H., Trüper, H. G., Balows, A., and Schlegel, H. G., eds., Springer-Verlag, Berlin, p. 299.

    Google Scholar 

  28. Cohen-Bazne, G., Sistrom, W. R., and Stainer, R. Y. (1957),J.Cell. Comp. Physiol. 49, 25.

    Article  Google Scholar 

  29. Van Niel, C. B. (1944),Bacteriol. Rev. 8, 1.

    Google Scholar 

  30. Khan, A. W. (1980),FEMS Microbiol. Lett. 9, 233.

    CAS  Google Scholar 

  31. Laube, V. M. and Martin, S. M. (1981),Appl. Environ. Microbiol. 42, 413.

    CAS  Google Scholar 

  32. Pirt, S. J., Harty, D. W., Salmon, I., and Kun Lee, V. (1987),J.Ferment. Technol. 65, 159.

    Article  CAS  Google Scholar 

  33. Siefert, E. and Pfennig, N. (1978),Appl. Environ. Microbiol. 35, 38.

    CAS  Google Scholar 

  34. Pfennig, N. (1978),Int. J. Syst. Bacteriol. 28, 283.

    Article  CAS  Google Scholar 

  35. Jones, B. R. (1956),Sewage Ind. Wastes 28, 883.

    Google Scholar 

  36. Kobayashi, M. (1975),Prog. Water Technol. 7, 309.

    CAS  Google Scholar 

  37. Kobayashi, M. (1975), inMicrobial Energy Conversion, Schlegel, H. G. and Barnea, J., eds., E. Goltze KG, Gottingen, Germany, p. 443.

    Google Scholar 

  38. Okuda, A. and Kobayashi, M. (1963),Microbiology 32, 792.

    Google Scholar 

  39. Kimmel, D. E., Klasson, K. T., Clausen, E. C, and Gaddy, J. L. (1991),Appl. Biochem. Biotechnol. 29, 457.

    Article  Google Scholar 

  40. Uffen, R. L. (1976),Proc. Natl. Acad. Sc. USA 73, 3298.

    Article  CAS  Google Scholar 

  41. Hippe, H., Caspari, D., Fiebig, K., and Gottschalk, G. (1979),Proc. Natl. Acad. ACL USA 76, 494.

    Article  CAS  Google Scholar 

  42. Jones, W. J., Nagle, D. P., Jr., and Whitman, W. D. (1987),Microbiol. Rev. 51, 135.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lalitha, K., Swaminathan, K.R., Vargheese, C.M. et al. Methanogenesis mediated by methylotrophic mixed culture. Appl Biochem Biotechnol 49, 113–134 (1994). https://doi.org/10.1007/BF02788546

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02788546

Index entries

Navigation