Skip to main content
Log in

Kinetic analysis of75selenium uptake by mitochondria of germinating vigna radiata of different selenium status

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Earlier studies in our laboratory demonstrated the beneficial role of Se inVigna radiata, a Se-deficient legume, during germination, as reflected in growth-related parameters and specific uptake of75Se. Uptake of Na2 75SeO3, added in vitro by mitochondria isolated from seedlings germinated in control (without Se), and Se-supplemented groups (0.5, 1.0, and 2.0 ppm Se) indicated a proportional increase in the uptake with added Na2 75SeO3, in concentrations up to 25 γM. The uptake of75Se, increased linearly with time up to 15 min and a definite efflux followed at 30 min. The results were indicative of cooperative effects during Se transport. Kinetic analyses of the uptake of75Se during time intervals of 15 and 30 min were carried out both in the whole mitochondria and the mitochondrial protein fractions. Graphical analyses using Lineweaver-Burk plot, Hill plot, log [v] vs log [A] and Scatchard plot confirmed the existence of negative cooperativity during75Se uptake. Hill coefficient (nH) values were estimated to be around 0.7–0.8. Scatchard plots for75Se uptake were biphasic, suggesting the probable presence of two classes of binding sites. The number of high and low affinity binding sites were estimated to be around 4–7 and 26–30 nmol/mg protein, respectively. Studies with mitochondrial respiratory inhibitors indicated about 10–20% of the total75Se uptake to be energy dependent. Inhibition of75Se uptake by about 60–70% by sulfate and sulfite (5–25 γM) implies the involvement of dicarboxylate port in Se transport. A decrease in the uptake of75Se by 40–60% effected by CdCl2, HgCl2, mersalyl, and NEM confirmed the interaction of thiols in the process. Evidence for the regulatory nature of75Se uptake by mitochondria ofV. radiata emerges from the present study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DNP:

2,4-dinitrophenol

NEM:

N-ethylmalei-mide

IAA:

iodoacetic acid

IAM:

iodoacetamide

ppm:

parts per million

References

  1. J. T. Rotruck, A. L. Pope, H. E. Ganther, A. B. Swanson, D. G. Hafeman, and W. G. Hoekstra,Science 179, 588 (1973).

    Article  PubMed  CAS  Google Scholar 

  2. L. Flohe, W. A. Gunzler, and H. H. Schock,FEBS Lett. 32, 132 (1973).

    Article  PubMed  CAS  Google Scholar 

  3. R. A. Sunde,JAOCS 61, 1891 (1984).

    Article  CAS  Google Scholar 

  4. J. Neve,J. Trace Elem. Electrolytes Health. Dis. 6, 57 (1992).

    PubMed  CAS  Google Scholar 

  5. D. Hatfield, I. S. Choi, S. Mischke and L. D. Owens,Biochem. Biophys. Res. Commun. 184, 254 (1992).

    Article  PubMed  CAS  Google Scholar 

  6. J. W. Anderson and A. R. Scarf inMetals and Micronutrients: Uptake and utilization by plants, D. A. Robb and W. S. Pierpoint, eds., Academic, New York, pp. 242–275 (1983).

    Google Scholar 

  7. A. Drotar, P. Phelps, and R. Fall,Plant Science 42, 35 (1985).

    Article  CAS  Google Scholar 

  8. M. C. Criqui, E. Jamet, Y. Parmentier, J. Marbach, A. Durr, and J. Fleck,Plant Mol. Biol. 18, 623 (1992).

    Article  PubMed  CAS  Google Scholar 

  9. K. P. McConnell and D. M. Roth,Biochim. Biophys. Acta. 62, 503 (1962).

    Article  CAS  Google Scholar 

  10. D. Medina, H. Lane, and C. J. Oborn,Cancer Lett. 15, 301 (1982).

    Article  PubMed  CAS  Google Scholar 

  11. T. A. Brown and A. Shrift,Plant Physiol. 66, 758 (1980).

    PubMed  CAS  Google Scholar 

  12. S. K. Sathe, A. C. Mason, and C. M. Weaver,J. Agric. Food. Chem. 40, 2077 (1992).

    Article  CAS  Google Scholar 

  13. F. Palmieri, F. Bisaccia, V. Iacobazzi, C. Indiveri, and V. Zara,Biochim. Biophys. Acta. 1101, 223 (1992).

    PubMed  CAS  Google Scholar 

  14. R. Kraemer and F. Palmieri,New Compr. Biochem. 23, 359 (1992).

    Article  CAS  Google Scholar 

  15. M. L. Phillips and G. R. Williams,Plant Physiol. 51, 667 (1973).

    PubMed  CAS  Google Scholar 

  16. R. Douce and W. D. Bonner, Jr.Biochem. Biophys. Res. Commun. 47, 619 (1972).

    Article  PubMed  CAS  Google Scholar 

  17. D. W. Jung and J. B. Hanson,Biochim. Biophys. Acta. 172, 198 (1969).

    Article  Google Scholar 

  18. A. DeSantis, G. Borraccino, O. Arrigoni, and F. Palmieri,Plant and Cell Physiol. 16 911 (1975).

    CAS  Google Scholar 

  19. J. Vivekananda, C. F. Beck, and D. J. Oliver,J. Biol. Chem. 263, 4782 (1988).

    PubMed  CAS  Google Scholar 

  20. C. A. Mclntosh and D. J. Oliver,Plant Physiol. 100, 2030 (1992).

    Google Scholar 

  21. J. E. Leggett and E. Epstein,Plant Physiol. 31, 222 (1956).

    PubMed  CAS  Google Scholar 

  22. G. Ferrari and F. Renosto,Plant Physiol. 49, 114 (1972).

    PubMed  CAS  Google Scholar 

  23. J. M. Ulrich and A. Shrift,Plant Physiol. 43, 14 (1968).

    Article  PubMed  Google Scholar 

  24. A. Shrift and J. M. Ulrich,Plant Physiol. 44, 893 (1969).

    PubMed  CAS  Google Scholar 

  25. S. Abou-Khalil and J. B. Hanson,Plant Physiol. 63, 635 (1979).

    PubMed  CAS  Google Scholar 

  26. R. T. Wedding and M. K. Black,Plant Physiol. 35, 72 (1960).

    Article  PubMed  CAS  Google Scholar 

  27. P. F. Bell, D. R. Parker, and A. L. Page,Soil Sci. Soc. Am. J. 56, 1818 (1992).

    CAS  Google Scholar 

  28. K. Easwari and K. Lalitha, inAdv. PI. Biotech. Biochem., M. L. Lodha, S. L. Mehta, S. Ramagopal, and G. P. Srivastava, eds.,Indian Soc. Agril. Biochemists, Kanpur, India, pp. 143–147 (1993).

    Google Scholar 

  29. W. D. Bonner Jr., in,Methods in Enzymology, Vol. 10, R. W. Estabrook and M. E. Pullman, eds., Academic, New York, pp. 126–133 (1967).

    Google Scholar 

  30. R. Otter, R. Reiter, and A. Wendel,Biochem. J. 258, 535 (1989).

    PubMed  CAS  Google Scholar 

  31. A. L. Lehninger, C. S. Rossi, and J. W. Greenawalt,Biochem. Biophys. Res. Commun. 10, 444 (1963).

    Article  PubMed  CAS  Google Scholar 

  32. T. K. Virupaksha and A. Shrift,Biochim. Biophys. Acta. 107, 69 (1965).

    PubMed  CAS  Google Scholar 

  33. P. J. Peterson and G. W. Bulter,Aust. J. Biol. Sci. 15, 126 (1962).

    CAS  Google Scholar 

  34. J. L. Martin, A. Shrift and M. L. Gerlach.Phytochemistry,10, 945 (1971).

    Article  CAS  Google Scholar 

  35. T. C. Stadtman,Annu. Rev. Biochem. 59, 111 (1990).

    Article  PubMed  CAS  Google Scholar 

  36. H. Ganther,Biochemistry 7, 898 (1968).

    Article  Google Scholar 

  37. A. Levitzki and D. E. Koshland, Jr.,FEBS Symposium. 19, 263 (1969).

    Google Scholar 

  38. A. V. Hill,J. Physiol. 40, IV (1910).

    Google Scholar 

  39. K. E. Neet, inMethods in Enzymology, Vol.64, Academic, New York, pp. 139–192 (1980).

    Google Scholar 

  40. G. Scatchard,Ann. NY Acad. Sci. 51, 660 (1949).

    Article  CAS  Google Scholar 

  41. I. B. Dry, J. H. Bryce, and J. T. Wiskich, in,The Biochemistry of Plants, A Comprehensive Treatise, vol. 11, P. K. Stumpf and E. E. Conn, eds., Academic, New York, pp. 213–251 (1987).

    Google Scholar 

  42. D. W. Jung and G. G. Laties,Plant Physiol. 63, 591 (1979).

    PubMed  CAS  Google Scholar 

  43. M. A. P. Silva, E. G. S. Carnieri, and A. E. Vercesi,Plant Physiol. 98, 452 (1992).

    PubMed  CAS  Google Scholar 

  44. H. W. Heldt and U. I. Flügge, in,The Biochemistry of Plants, A Comprehensive Treatise, Vol. 12, P. K. Stumpf and E. E. Conn, eds, Academic, New York, pp. 49–85 (1987).

    Google Scholar 

  45. D. M. Ziegler,Annu. Rev. Biochem. 54, 309 (1985).

    Google Scholar 

  46. T. Yagi and Y Hatefi,Arch. Biochem. Biophys. 254, 102 (1987).

    Article  PubMed  CAS  Google Scholar 

  47. N. Haugaard, N. H. Lee, R. Kostrzewa, R. S. Horn, and E. S. Haugaard,Biochim. Biophys. Acta. 172, 198 (1969).

    Article  PubMed  CAS  Google Scholar 

  48. E. K. Porter, J. A. Karle, and A. Shrift,J. Nutr. 109, 1901 (1979).

    PubMed  CAS  Google Scholar 

  49. P. D. Whanger, S. C. Vendeland, J. T. Deagen, and J. A. Butler,Trace Elem. Man Anim. 7 (Pub 1991) 17/11–17/12.

    Google Scholar 

  50. K. Kurosawa, N. Hayashi, N. Sato, N. Kamada, and K. Tagawa,Biochem. Biophys. Res. Commun. 167, 367 (1990).

    Article  PubMed  CAS  Google Scholar 

  51. K. Easwari and K. Lalitha,Biol. Trace Elem. Res. (1994) in press.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lalitha, K., Easwari, K. Kinetic analysis of75selenium uptake by mitochondria of germinating vigna radiata of different selenium status. Biol Trace Elem Res 48, 67–89 (1995). https://doi.org/10.1007/BF02789080

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02789080

Index Entries

Navigation