Skip to main content
Log in

Lead levels in bone and hair of rats treated with lead acetate

  • Original Articles
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The use of hair and bone as media in evaluation of lead exposure was investigated in this study. For 12–16 wk rats were given tap water containing lead acetate in the following concentrations: 41.7 mg Pb/L, 83.3 mg Pb/L, and 166.6 mg Pb/L. The animals were sacrificed every 4 wk and their tibia bones and hair were collected for determination of lead content. In control animals, the lead level amounted to 1.2 μg/g (range 0.8–1.3 μg/g) and 0.7 μg/g (range 0.4–2.0 μg/g) in bone and hair, respectively. In the treated rats the accumulation of lead in bone and hair occurred in a dose-dependent manner. A positive corelation (r=0.876) was established between the lead levels in bone and hair of the rats. The regression equation was as follows: μg Pb/g bone=0.842×μg Pb/g hair+1.868. After discontinuation of exposure, a significant decrease in the lead content in bone and hair was noticed. About 9 wk after cessation of treatment, the lead content in hair declined to the pre-exposure level, but 64% of the maximal lead concentration did remain in bone. The results of this study indicate that during a continuous exposure the lead level in hair reflects its content in bone. Such phenomena did not occur during the postexposure period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Hu, F. L. Milder, and D. E. Burger,Environ. Health Perspect. 94, 107–110 (1991).

    Article  PubMed  CAS  Google Scholar 

  2. H. Hu, L. Pepper, and R. Goldman,Am. J. Ind. Med. 20, 723–735 (1991).

    Article  PubMed  CAS  Google Scholar 

  3. R. K. Sokas, A. Besarab, M. A. McDiarmid, J. M. Shapiro, and P. Bloch,Arch. Environ. Health 45, 268–272 (1990).

    Article  PubMed  CAS  Google Scholar 

  4. J. Erkila, R. Armstrong, V. Riihimaki, D. R. Chettle, A. Paakari, M. Scott, L. Somervaille, J. Starck, B. Kock, and A. Aitio,Brit. J. Ind. Med. 49, 631–644 (1992).

    Google Scholar 

  5. D. R. Chettle, M. C. Scott, and L. J. Somervaille,Environ. Health Perspect. 91, 49–55 (1991).

    Article  PubMed  CAS  Google Scholar 

  6. A. C. Todd, F. E. McNeill, and B. A. Fowler,Environ. Res. 59, 326–335 (1992).

    Article  PubMed  CAS  Google Scholar 

  7. U. Nilsson, R. Attewell, J. O. Christoffersson, A. Schutz, L. Ahlgren, S. Skerfving, and S. Mattsson,Pharmacol. Toxicol. 68, 477–484 (1991).

    PubMed  CAS  Google Scholar 

  8. J. Skorowska-Zieleniewska, H. Symonowicz, and P. Marszał,Roczn. PZH. 34, 175–179 (1983).

    Google Scholar 

  9. J. Skorowska-Zieleniewska, B. Cabalska, B. Gołabek, H. Symonowicz, and M. Nowakowska,Roczn. PZH. 35, 337–340 (1984).

    Google Scholar 

  10. P. N. Ljubczenko, B. A. Revich, and W. W. Koleonik,Gig. Trud. Prof. Zabol. 3, 7–9 (1989).

    Google Scholar 

  11. W. Zaborowska, J. Wiercińska, and H. Maciejewska-Korak,Med. Pracy. 40, 38–43 (1989).

    CAS  Google Scholar 

  12. M. Wilhelm and F. K. Ohnesorge,Sci. Total Environ. 92, 199–206 (1990).

    Article  PubMed  CAS  Google Scholar 

  13. B. A. Revich,Gig. Sanit. 3, 55–59 (1990).

    PubMed  Google Scholar 

  14. M. Schumacher, J. L. Domingo, J. M. Llobert, and J. Corbella,Sci. Total Environ. 15, 167–173 (1991).

    Article  Google Scholar 

  15. A. Sukumar and R. Subramanian,Sci. Total Environ. 114, 161–168 (1992).

    Article  PubMed  CAS  Google Scholar 

  16. M. Wilhelm, D. Hafner, I. Lombeck, and F. K. Ohnesorge,Sci. Total Environ. 103, 199–207 (1991).

    Article  PubMed  CAS  Google Scholar 

  17. M. Leonsinidis and X. Kondaksis,Sci. Total Environ. 95, 149–156 (1990).

    Article  Google Scholar 

  18. J. L. Burguera, M. Burguera, C. E. Rondon, C. Rivas, J. A. Burguera, and O. M. Alarcon,J. Trace Elem. Electrolytes Health Dis. 1, 21–26 (1987).

    PubMed  CAS  Google Scholar 

  19. C. A. Bache, D. J. Lisk, J. M. Scarlett, and L. G. Varbone,J. Toxicol. Environ. Health 34, 423–431 (1991).

    Article  PubMed  CAS  Google Scholar 

  20. Z. Jaworowski and J. Bilkiewicz,Post. Fiz. Med. 1/2, 31–38 (1970).

    Google Scholar 

  21. T. W. Clarkson, L. Friberg, G. F. Nordberg, and P. R. Sager,Biological Monitoring of Toxic Metals, Plenum, New York, 1988.

    Google Scholar 

  22. A. Chatt and S. A. Katz,Hair Analysis, VCH, New York, 1988.

    Google Scholar 

  23. J. O. Christoffersson, A. Schuts, S. Skerfving, L. Ahlgren, and S. Mattson,Arch. Environ. Health 41, 312–318 (1987).

    Article  Google Scholar 

  24. S. Skerfving, L. Ahlgren, J. O. Christoffersson, B. Haeger-Aronsen, S. Mattsson, and A. Schutz,Arch. Hig. Rada Toksikol. 34, 277–286 (1983).

    Google Scholar 

  25. W. Bolanowska, J. Piotrowski, and B. Trojanowska,Med. Pracy 18, 29–41 (1967).

    Google Scholar 

  26. P. Grandjean,Human Toxicol. 3, 223–228 (1984).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hać, E., Krechniak, J. Lead levels in bone and hair of rats treated with lead acetate. Biol Trace Elem Res 52, 293–301 (1996). https://doi.org/10.1007/BF02789170

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02789170

Index Entries

Navigation